

logiREF-DFX-IDF

logiREF-DFX-IDF Dynamic Function eXchange
Design Framework with Isolation Design Flow

User‘s Manual
Version: 1.0.2

logiREF-DFX-IDF_v1.0.2

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 2 of 70

All rights reserved. This manual may not be reproduced or utilized without the prior written permission
issued by Xylon.

Copyright © Xylon d.o.o. logicBRICKS® is a registered Xylon trademark.
All other trademarks and registered trademarks are the property of their respective owners.
This publication has been carefully checked for accuracy. However, Xylon does not assume any
responsibility for the contents or use of any product described herein. Xylon reserves the right to
make any changes to product without further notice. Our customers should ensure to take appropriate
action so that their use of our products does not infringe upon any patents.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 3 of 70

1 ABOUT THE FRAMEWORK ... 5

1.1 PROGRAMMABLE LOGIC UTILIZATION ... 6
1.2 HARDWARE REQUIREMENTS ... 8

1.2.1 GMSL2 Deserializer FMC Module .. 8
1.2.2 Xylon GMSL2 Camera .. 9

1.3 SOFTWARE REQUIREMENTS .. 10
1.3.1 About Xilinx VitisTM Development Environment ... 10

1.4 DESIGN DELIVERABLES ... 11
1.4.1 Hardware Design Files ... 11
1.4.2 Software ... 11
1.4.3 Binaries .. 11

1.5 REFERENCE DESIGN .. 12
2 LOGICBRICKS IP CORES .. 13

2.1 ABOUT LOGICBRICKS IP LIBRARY .. 13
2.2 EVALUATION LOGICBRICKS IP CORES .. 14
2.3 LOGICBRICKS IP CORES USED IN THIS DESIGN .. 15

2.3.1 logiCVC-ML Compact Multilayer Video Controller ... 15
2.3.2 logiWIN Versatile Video Input ... 16

2.4 LOGICBRICKS IP CORES FOR VIDEO PROCESSING .. 17
3 GET AND INSTALL THE DESIGN FRAMEWORK .. 18

3.1 INSTALLATION PROCESS ... 18
3.1.1 Filesystem Permissions of the Installed Folder (Microsoft® Windows® OS) 19

FOLDER STRUCTURE ... 20
4 GETTING THE IP LICENSES .. 22

4.1 GETTING LOGICBRICKS IP LICENCES ... 22
4.2 GETTING THE XILINX HDMI 1.4/2.0 TRANSMITTER SUBSYSTEM LICENSE 23

5 LOGIREF-DFX-IDF REFERENCE DESIGN ... 24

5.1 LOGIREF-DFX-IDF SOC DESIGN AND MEMORY LAYOUT .. 24
5.2 VIDEO INPUT/OUTPUT SYNCHRONIZATION ... 27

5.2.1 logiWIN Hardware Buffering Implementation .. 27
5.2.2 logiCVC-ML Hardware Buffering Implementation .. 27

5.3 XYLON LOGICBRICKS IP CORE CONFIGURATION ... 29
5.4 SIHA IP MANAGER ... 30
5.5 SEM IP CONTROLLER .. 31
5.6 RESTORING FULL MPSOC DESIGN FROM XYLON DELIVERABLES .. 31
5.7 SOFTWARE DESCRIPTION ... 41

5.7.1 Demo application .. 41
5.7.2 DFX functionality description .. 44
5.7.3 Error injection using SEM ... 47
5.7.4 Configuration file description ... 47
5.7.5 Input resolution and the frame rate ... 48
5.7.6 Output resolution and the frame rate .. 48

6 QUICK START ... 49

6.1 RUN THE PRECOMPILED LINUX DEMO EXAMPLES ... 50
6.2 DEMO CONTROLS ... 50
6.3 CHANGE THE DELIVERED SOFTWARE .. 50

6.3.1 Xilinx Development Software .. 50

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 4 of 70

6.3.2 Set Up Linux System Software Development Tools .. 51
6.3.3 Set Up git Tools .. 51
6.3.4 Setting up and building the Petalinux project .. 51
6.3.5 Setting up the Vitis workspace .. 58

6.4 DEBUGGING SOFTWARE APPLICATION WITH THE TCF AGENT ... 63
6.5 SEM UART EXAMPLE COMMANDS .. 65

7 REFERENCES ... 69

8 REVISION HISTORY ... 70

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 5 of 70

1 ABOUT THE FRAMEWORK

The logiREF-DFX-IDF Dynamic Function eXchange Design Framework with Isolation Design Flow
enables users to quickly utilize the provided hardware platform for their own development of the
Xilinx® All Programmable Zynq® UltraScale+TM MPSoC based embedded multi-camera vision
systems. The flexibility of the existing design is taken one step further by utilizing Dynamic Function
eXchange (DFX) and Isolation Design Flow (IDF) solution that allows modifications of operating
FPGA design by loading partial BIT files into dedicated and predefined reconfigurable partitions (RP)
on FPGA. That partial design functionality will contain predefined and fully built Vitis Vision Library
HLS functions (REF [2]) for provisional filtering of video inputs on all four cameras. Design comes with
implemented Xilinx’s Soft Mitigation IP (SEM) which is automatically configured, pre-verified solution
for detection and correction of errors in Configuration Memory of Xilinx® FPGAs (REF [4]).

Also, the reference design for the Partial reconfiguration is done by following the new Vivado ML
Edition 2021.1 modular design approach using Block Design Containers (BDC). This is a new Vivado
feature that allows users to segment design into multiple block designs, enabling modular and team-
based design flows, including the DFX. More information on these new features and Isolation Design
Flow can be found in official Xilinx documentation (REF [1] and REF [3]).

The framework includes pre-verified logicBRICKS reference designs for video capture and HDMI
display output under the Linux operating system. Video capture is performed using Xylon video
cameras with the Maxim Integrated GMSL2 high-speed digital video interface (GMSL2 version; see
Figure 1). Reference design is prepared for hardware-centric Vivado® Design Suite 2021.1.

Figure 1: Xylon logiREF-DFX-IDF-ZU Development Kit – GMSL2 Version

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 6 of 70

This reference design is modular, and it defines static region and four reconfigurable partitions.
Instead of starting from scratch and having to spend months designing and building a new design
framework, the logiADAK-VDF-ZU design framework is used in the static block of the design. Four
reconfigurable partitions are then added using the BDC design flow, and those partitions are fully
controlled from the static block as shown in the Figure 2. Control of reconfigurable regions is
performed using Xilinx new SIHA Manager for clock control, reset control, and decoupling logic for all
four reconfigurable regions. The SIHA Manager IP is also part of the static block design. Following the
IDF requirements, both static and reconfigurable partitions are isolated from each other.

The logiREF-DFX-IDF reference design includes Xylon logicBRICKS IP cores and hardware design
files prepared for Xilinx Vivado ML Edition 2021.1. The design also includes IP cores built using Vitis
Vision Library HLS and serving as HW accelerated filters: No filter, CCM Green filter and Sobel filter.

Hardware designers can customize design and add their own IP cores through the Vivado IP
Integrator (IPI). The Linux OS and software drivers for logicBRICKS IP cores enable software
developers to efficiently work with the framework, without knowing the hardware implementation
details. This modular approach enables developing and adding additional logic for reconfigurable
regions without any impact on the static portion of design. User can easily add for example some
other filter from the Vitis Vision Library and prepare it for use in specific reconfigurable region. In this
reference design, as mentioned before, three Vitis Vision Library filters (actually two filters and one
pass through design) were prepared and built following DFX rules for use in partial reprogramming
flow.

STATIC BLOCK

RECONFIGURABLE
BLOCK 0

RECONFIGURABLE
BLOCK 1

RECONFIGURABLE
BLOCK 2

RECONFIGURABLE
BLOCK 3

NO FILTER

CCM GREEN FILTER

SOBEL FILTER

Figure 2: Xylon logiREF-DFX-IDF Simplified Block Diagram

1.1 Programmable Logic Utilization

The logiREF-DFX-IDF reference design utilizes just a small fraction of available programmable logic
resources in the Xilinx Zynq UltraScale+ MPSoC XCZU9EG device. Free resources can be utilized by
users altering pre-defined logicBRICKS configurations and changing programmable logic utilization.
Please note that due to the nature of Dynamic Function eXchange workflow, multiple design runs
have to be executed to get the complete design. The total number of runs is defined by number of

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 7 of 70

different DFX functions to be used. In this reference design, three reprogrammable DFX functions are
used, so the total number of three Vivado runs had to be done. Utilization for each of these runs is
shown in the tables below:

Table 1: logiREF-DFX-IDF Reference Design Programmable Logic Utilization (No filter)

Family

(Device)

F (MHz)
LUT

1
 FF

1
 IOB

2
 BRAM MULT/ DSP48/E

PLL /

MMCM
BUFG GTx

Design

Tools mclk
4
 vclk

4
 rclk

Zynq

UltraScale+
3

(XCZU9EG-2)

(200/200) (150/200) 100 98048 123892 48 265 177 1/2 27 0
Vivado ML

2021.1

Table 2: logiREF-DFX-IDF Reference Design Programmable Logic Utilization (CCM Green filter)

Family

(Device)

F (MHz)
LUT

1
 FF

1
 IOB

2
 BRAM MULT/ DSP48/E

PLL /

MMCM
BUFG GTx

Design

Tools mclk
4
 vclk

4
 rclk

Zynq

UltraScale+
3

(XCZU9EG-2)

(200/200) (150/200) 100 99472 123980 48 265 177 1/2 27 0
Vivado ML

2021.1

Table 3: logiREF-DFX-IDF Reference Design Programmable Logic Utilization (Sobel filter)

Family

(Device)

F (MHz)
LUT

1
 FF

1
 IOB

2
 BRAM MULT/ DSP48/E

PLL /

MMCM
BUFG GTx

Design

Tools mclk
4
 vclk

4
 rclk

Zynq

UltraScale+
3

(XCZU9EG-2)

(200/200) (150/200) 100 103244 127084 48 283 177 1/2 27 0
Vivado ML

2021.1

Notes:

1) Assuming the following configuration: AXI Stream, RGB output, 32-bit AXI4-Lite register interface, 64-bit AXI4 memory interface with

max. burst size of 64 words, scaling in both directions with multipliers (DSP48s), output stride set to 2048 pixels
2) Assuming only video inputs are routed off-chip, register and memory interfaces are connected internally
3) Only burst size of 16 words is supported on HP ports in the Xilinx Zynq UltraScale+ MPSoC
4) logiCVC/logiWIN clock frequencies

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 8 of 70

1.2 Hardware Requirements

The logiREF-DFX-IDF Vision Development Kit (Figure 1) includes the following hardware utilized by
reference designs provided in the logiREF-DFX-IDF design framework:

 1x Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit (Manufacturer part
No.: EK-U1-ZCU102-G)

 Kit package contains:
o ZCU102 Evaluation Board (Manufacturer part No.: HW-Z1-

ZCU102 Rev. 1.1)
o Power supply
o Xilinx license slip

 1x Xylon GMSL2 FMC daughter card (part no.: logiFMC-GMSL2-9296A-12C)
 4x Xylon GMSL2 video camera (part no.: logiCAM-GMSL2-AR0231-05525FM)

 Camera package contains:
o Xylon video camera
o FAKRA cable assembly (5m)

 3x Xylon 4 HFM Rosenberger connector adapter (part no: logiFMC-CBL-4HFM)
 1x SD card

 High/Extreme Capacity, High/Ultra Speed

Table 4: Included Hardware

Reference Design Hardware
1x Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit

1
 (ver 1.1) with the XCZU9EG-FFVB1156-2 device

1x Xylon GMSL2 Deserializer FMC Module (Product code: logiFMC-GMSL2-9296)
4x 2.3-Mpix Xylon GMSL2 Cameras
1x SD card
4x FAKRA cable assemblies
Power supply

1 – OEM kit version without the Xilinx Vivado Design Suite seat
2 – logiREF-DFX-IDF is delivered in GMSL2 version

1.2.1 GMSL2 Deserializer FMC Module

The logiREF-DFX-IDF reference design delivered requires Xylon GMSL2 Deserializer FMC module
(Figure 3), which comes as a part of the hardware kit deliverables.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 9 of 70

Figure 3: Xylon GMSL2 Deserializer FMC Module

1.2.2 Xylon GMSL2 Camera

For transmissions of high-definition uncompressed video and camera control data the logiREF-DFX-
IDF development kit includes Xylon cameras compatible with the Maxim Integrated GMSL2 high-
speed digital video interface. Each camera includes the ON Semiconductor AR0231 2.3-megapixel
camera sensor that combines high-definition (HD) 1928x1208p30 Full HD video with the color high
dynamic range (HDR) functionality, GMSL2 serializer (transmitter) board, short cable lead with a
connector and FIFO Optics 05525FM narrow-angle lens.

All camera parts are enclosed in the aluminium housing designed by Xylon. Its rugged metal
construction provides excellent lens and imager module protection and enables safe and easy test
vehicle installations.

Figure 1.4: Xylon Video Camera – logiCAM-GMSL2-AR0231

More information about Xylon video camera, its features and customization abilities can be obtained
from Xylon Sales Team (sales@logicbricks.com) and Xylon Support Team
(support@logicbricks.com).

mailto:sales@logicbricks.com
mailto:support@logicbricks.com

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 10 of 70

Video cameras are connected to FMC daughter card using Rosenberger Quadpod cable assemblies
– L02-027-1000-Z-ZZZZ_V2. These cable assemblies can be obtained from Avnet Electronics
Marketing. The assembly is presented in Figure 1.5, with Rosenberger Quadpod connector.

Figure 1.5: Rosenberger Quad HFM to 4 FAKRA Cable Assembly – L02-027-1000-Z-ZZZZ_V2

1.3 Software Requirements

The logiREF-DFX-IDF reference design and Xylon logicBRICKS IP cores are fully compatible with
Xilinx development tools – Vivado ML 2021.1, Vitis 2021.1 and PetaLinux 2021.1. Future design
releases shall be synchronized with the newest Xilinx development tools.

Demo software application is a Linux application developed for Petalinux 2021.1. For building
Petalinux 2021.1 from the delivered Board Support Package (BSP), as well as rebuilding after making
any modifications to the OS setup, such as adding/removing kernel drivers, changing kernel driver
settings, changing rootfs settings, or simply making modifications to the user DTS files, a Petalinux
2021.1 build environment is required. This environment can be downloaded from the Xilinx website
(https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-
design-tools.html). The environment can only be installed on Linux machines.

1.3.1 About Xilinx VitisTM Development Environment

The Xilinx VitisTM Development Environment is a specialized development environment for
accelerating AI inference on Xilinx embedded platforms, Alveo accelerator cards, or on the FPGA-
instances in the cloud. The VitisTM Development Environment is Xilinx’s development platform for AI
inference on Xilinx hardware platforms, including both edge devices and Alveo™ cards. It consists of
optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and
ease-of-use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP.

Complete with the industry’s first C/C++ full-system optimizing compiler, Xilinx VitisTM Development
Environment delivers system level profiling, automated software acceleration in programmable logic,
automated system connectivity generation, and libraries to speed up programming.

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 11 of 70

More info about Xilinx VitisTM can be found at Xilinx website (https://www.xilinx.com/products/design-
tools/vitis.html).

Xylon is the VitisTM Development Environment development environment-qualified Xilinx
Alliance Member and offers logicBRICKS IP cores, complete Xilinx All Programmable based
solutions and design services.

1.4 Design Deliverables

1.4.1 Hardware Design Files

 Configuration bitstreams files for the programmable logic and the Vitis export of the reference
design that allows for instant design check-up and software changes

 Reference design prepared for Vivado ML 2021.1
 Xylon evaluation logicBRICKS IP cores:

 logiCVC-ML Compact Multilayer Video Controller
 logiWIN Versatile Video Input

 Xylon IP Cores that are not sold separately but only serve to augment this specific reference
design:

 TUSER-Trimmer

1.4.2 Software

 Linux user space drivers with driver examples
 Bare-metal software drivers for logicBRICKS IP cores
 logiVIOF VideoIn-VideoOut Library
 DFX-IDF Demo application sources

1.4.3 Binaries

 FPGA bitstreams
 Linux binaries:

 boot.bin
o First Stage Boot Loader
o Universal Boot Loader
o FPGA
o Platform Management Unit Firmware

 image.ub
o kernel image
o device tree blob
o minimal Root File System

 Four Camera DFX-IDF demo

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
file:///D:/user/acazin/projekti/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/OLK6A10/hardware/drivers/

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 12 of 70

1.5 Reference Design

The logiREF-DFX-IDF reference design implements four parallel video inputs from Xylon cameras,
and the display output with the RGB graphic overlay. The design features a total of two MIPI CSI-2
input interfaces (ports) multiplexing video signal from four Xylon GMSL2 video cameras and the Full
HD display monitor output using the on board HDMI. All video inputs are stored in the video memory,
and user can use on-board push buttons or console terminal attached to select any video input for the
single camera full screen view, or all inputs can be viewed simultaneously in a 4x4 grid display.

In each case, different filters can be applied on any or all cameras independently. User applies partial
reconfiguration on the running design using simple commands which load new bitstreams into the
reconfigurable regions. The result is different filter effect applied on the chosen video input, running as
the HW accelerator and shown on the screen in real time without restarting the board.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 13 of 70

2 LOGICBRICKS IP CORES

2.1 About logicBRICKS IP Library

Xylon’s logicBRICKS IP core library provides IP cores optimized for Xilinx All Programmable FPGA
and SoC devices. The logicBRICKS IP cores shorten development time and enable fast design of
complex embedded systems based on Xilinx All Programmable devices.

The key features of the logicBRICKS IP cores are:

 logicBRICKS can be used in the same way as Xilinx IP cores within the Xilinx Vivado Design

Suite, and require no skills beyond general tools knowledge. IP users setup feature sets and
programmable logic utilization through implementation tools’ Graphical User Interface (GUI).

 Each logicBRICKS IP core comes with the extensive documentation, reference design

examples and can be evaluated on reference hardware platforms. Xylon provides evaluation
logicBRICKS IP cores to enable risk-free evaluation prior to purchase.

 Broad software support – from bare-metal software drivers to standard software drivers for

different operating systems (OS). Standard software support allows graphics designers and
software developers to use logicBRICKS in a familiar and comfortable way.

 Xylon assures skilled technical support.

Figure 6: logicBRICKS IP Cores Imported into the Vivado IP Catalog

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 14 of 70

The Figure 6 shows logicBRICKS IP cores imported into Vivado Design Suite, while the Figure 7
shows a typical logicBRICKS IP core’s configuration GUI.

Figure 7: Example of logicBRICKS IP Configuration GUI

To access logicBRICKS IP cores’ User’s Manuals, double-click on the specific IP core’s icon, and
then the Documentation icon in the opened IP configuration GUI. Choose either the Product guide to
open the manual, or the Change Log to open IP core’s change log.

logicBRICKS User’s Manuals contain all necessary information about the IP cores’ features,
architecture, registers, modes of operation, etc.

2.2 Evaluation logicBRICKS IP Cores

Xylon offers free evaluation logicBRICKS IP cores which enable full hardware evaluation:

 Import into the Xilinx Vivado tools (IP Integration)
 IP parameterization through the GUI interface
 Simulation (if Xilinx tools support it)
 Bitstream generation

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 15 of 70

The logicBRICKS evaluation IP cores are run-time limited and cease to function after some time.
Proper operation can be restored by reloading the bitstream. Besides this run-time limitation, there
are no other functional differences between the evaluation and fully licensed logicBRICKS IP cores.

Evaluation logicBRICKS IP cores are distributed as parts of the Xylon reference designs:
http://www.logicbricks.com/logicBRICKS/Reference-logicBRICKS-Design.aspx.

Specific IP cores can be downloaded from Xylon’s web shop:
http://www.logicbricks.com/Products/IP-Cores.aspx.

2.3 logicBRICKS IP Cores Used in This Design

2.3.1 logiCVC-ML Compact Multilayer Video Controller

The logiCVC-ML IP core is an advanced display graphics controller for LCD
and CRT displays, which enables an easy video and graphics integration into
embedded systems with Xilinx Zynq-7000 All Programmable SoC and FPGAs.

This IP core is the cornerstone of all 2D and 3D GPUs. Though its main

function is to provide flexible display control, it also includes hardware
acceleration functions: three types of alpha blending, panning, buffering of
multiple frames, etc.

 Supports all Xilinx FPGA families
 Supports LCD and CRT displays (easily tailored for special display types)
 Display resolutions up to 8192x8129 (including 4K2K resolution)
 Available SW drivers for: Linux and Microsoft Windows Embedded Compact OS
 Support for higher display resolutions available on request
 Supports up to 5 layers; the last one configurable as a background layer
 Configurable layers’ size, position and offset
 Alpha blending and Color keyed transparency
 Pixel, layer, or Color Lookup Table (CLUT) alpha blending mode can be independently set for

each layer
 Packed pixel layer memory organization:

 RGB – 8bpp, 8bpp using CLUT, 16bpp 5-6-5, 24bpp 8-8-8 and 30bpp 10-10-10
 YCbCr – 16bpp (4:2:2), 20bpp (4:2:2), 24bpp (4:4:4), 30bpp (4:4:4)

 Configurable ARM® AMBA® AXI4 memory interface data width (32, 64, 128 or 256 bits)
 Programmable layer memory base address and stride
 Simple programming due to small number of control registers
 Support for multiple output formats:

 Parallel display data bus (RGB or YCrCb) with 1, 2 or 4 pix per clock: 12x2-bit, 15, 16,
18, 20, 24, 30 bit

 Digital Video ITU-656: PAL and NTSC
 LVDS output format: 3 or 4 data pairs plus clock
 Camera link output format: 4 data pairs plus clock
 DVI output format (currently not supported in US and US+ devices)

 Supports synchronization to external parallel input

http://www.logicbricks.com/logicBRICKS/Reference-logicBRICKS-Design.aspx
http://www.logicbricks.com/Products/IP-Cores.aspx

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 16 of 70

 Versatile and programmable sync signals timing
 Double/triple buffering enables flicker-free reproduction
 Display power-on sequencing control signals
 Parametrical VHDL design that allows tuning of slice consumption and features set
 Prepared for Xilinx Vivado tools

More info: http://www.logicbricks.com/Products/logiCVC-ML.aspx
Datasheet: http://www.logicbricks.com/Documentation/Datasheets/IP/logiCVC-ML_hds.pdf

2.3.2 logiWIN Versatile Video Input

The logiWIN IP core enables easy implementation of video frame grabbers.
Input video can be decoded, real-time scaled, de-interlaced, cropped, anti-
aliased, positioned on the screen... Multiple logiWIN instances enable
processing of multiple video inputs by a single Xilinx device.

 Supports versatile digital video input formats:
 ITU656 and ITU1120 (PAL and NTSC)
 RGB
 YUV 4:2:2

 Maximum input and output resolutions are 2048 x 2048 pixels
 Built-in YcrCb to RGB converter, YUV to RGB converter and RGB to YcrCb converter
 Embedded image color enhancements: contrast, saturation, brightness and hue for ITU and

YUV separately
 Real-time video scale-up (zoom in) up to 64x
 Real-time video scale-down (zoom out) down to 16 times

 Lossless scaling down to 2x, or 4x in cascade scaling mode
 Supports video input cropping and smooth image positioning
 Configurable register interface; ARM® AMBA® AXI4-Lite
 ARM® AMBA® AXI4 and AXI4-Lite bus compliant
 Compressed stencil buffer in BRAM (mask over output buffer)
 Supports pixel alpha blending
 Provides “Bob” and “Weave” de-interlacing algorithms
 Supported big and little Endianness memory layout
 Double or triple buffering for flicker-free video
 Prepared for Xilinx Vivado tools

More info: https://www.logicbricks.com/Products/logiWIN.aspx
Datasheet: https://www.logicbricks.com/Documentation/Datasheets/IP/logiWIN_hds.pdf

http://www.logicbricks.com/Products/logiCVC-ML.aspx
http://www.logicbricks.com/Documentation/Datasheets/IP/logiCVC-ML_hds.pdf
https://www.logicbricks.com/Products/logiWIN.aspx
https://www.logicbricks.com/Documentation/Datasheets/IP/logiWIN_hds.pdf

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 17 of 70

2.4 logicBRICKS IP Cores for Video Processing

Xylon offers several logicBRICKS IP cores for video processing on Xilinx All Programmable FPGA,
SoC and MPSoC devices:

logiVIEW Perspective Transformation and Lens Correction Image Processor

Removes fish-eye lens distortions and executes programmable transformations on
multiple video inputs in real time. Programmable homographic transformation
enables: cropping, resizing, rotating, transiting and arbitrary combinations. Arbitrary
non-homographic transformations are supported by programmable Memory Look-
Up Tables (MLUT).

More info: http://www.logicbricks.com/Products/logiVIEW.aspx
Datasheet: http://www.logicbricks.com/Documentation/Datasheets/IP/logiVIEW_hds.pdf

logiISP Image Signal Processing (ISP) Pipeline

The logiISP Image Signal Processing Pipeline IP core is a full high-definition ISP
pipeline designed for digital processing and image quality enhancements of an
input video stream in Smarter Vision embedded designs based on Xilinx All
Programmable devices.

More info: http://www.logicbricks.com/Products/logiISP.aspx
Datasheet: http://www.logicbricks.com/Documentation/Datasheets/IP/logiISP_hds.pdf

logiHDR High Dynamic Range (HDR) Pipeline

Ultra-High Definition (UHD, including 4K2Kp60) HDR pipeline for camera image
quality enhancements. Enables extraction of the maximum detail from high-
contrast scenes, i.e. scenes with objects highlighted by a direct sunlight and
objects placed in extreme shades.

More info: http://www.logicbricks.com/Products/logiHDR.aspx
Datasheet: http://www.logicbricks.com/Documentation/Datasheets/IP/logiHDR_hds.pdf

http://www.logicbricks.com/Products/logiVIEW.aspx
http://www.logicbricks.com/Documentation/Datasheets/IP/logiVIEW_hds.pdf
http://www.logicbricks.com/Products/logiISP.aspx
http://www.logicbricks.com/Documentation/Datasheets/IP/logiISP_hds.pdf
http://www.logicbricks.com/Products/logiHDR.aspx
http://www.logicbricks.com/Documentation/Datasheets/IP/logiHDR_hds.pdf

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 18 of 70

3 GET AND INSTALL THE DESIGN FRAMEWORK

Customers entitled for the logiREF-DFX-IDF installation package delivery get the unique
FTP or web download account from Xylon. To purchase the design framework, please
visit our online catalogue: http://www.logicbricks.com/Products/logiREF-DFX-IDF-ZU.aspx

3.1 Installation Process

Installation process is quick and easy. The logiREF-DFX-IDF framework can be
downloaded as a cross-platform Java JAR self-extracting installer. Please make sure that
you have a copy of the JRE (Java Runtime Environment) version 6 or higher on your
system to run Java applications and applets. Double-click on the installer’s icon to run the
installation.

At the beginning, you will be requested to accept the design framework license – Figure 8. For
installation in Linux OS, please follow instructions:

http://www.logicbricks.com/logicBRICKS/Reference-logicBRICKS-Design/Xylon-Reference-Designs-
Linux-Installation.aspx.

If you agree with the conditions from the Xylon license, click NEXT and select the installation path
for your logicBRICKS reference design (Figure 9). The installation process takes several minutes. It
generates the folder structure described in the paragraph 3.1.1 Folder Structure.

Figure 8: Installation Process – Step 1

Figure 9: Installation Process – Step 2

http://www.logicbricks.com/Products/logiREF-DFX-IDF-ZU.aspx
http://www.logicbricks.com/logicBRICKS/Reference-logicBRICKS-Design/Xylon-Reference-Designs-Linux-Installation.aspx
http://www.logicbricks.com/logicBRICKS/Reference-logicBRICKS-Design/Xylon-Reference-Designs-Linux-Installation.aspx

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 19 of 70

Figure 10: Installation Process – Step 3

Figure 11: Installation Process – Step 4

3.1.1 Filesystem Permissions of the Installed Folder (Microsoft® Windows® OS)

The reference design installed in the default path C:\Program Files\xylon may inherit read-only

filesystem permissions from the parent folder. This will block you in opening the hardware project file
in Xilinx Vivado tools. Therefore it is necessary to change the filesystem permissions for the current
user to “Full control” preferably.

To change the user permissions for C:\Program Files\xylon folder and all of its subdirectories,

right click on the C:\Program Files\xylon folder and select “Properties”. Under “Security” tab

select “Edit”. Select “Users” group in the list and check “Full control” checkbox in the “Allow” column.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 20 of 70

Folder Structure

Figure 12 gives a top level view of the directories and files included with the logiREF-DFX-IDF
video design framework. Table 5 explains the purpose of directories.

vivado hardware

INSTALLATION ROOT

evaluation licenses
(.pdf)

drivers

logiI2C SW Files

software

logiCVC-ML IP core

logiWIN IP core

Linux

apps

logicbricks

src

create_project.html

if

vivado_dfx_idf_sem

data

srcs

scripts

hdl

fpga

doc

 mux2to1

data binaries

xyl_oslib_lu

sw_services

Vitis_workspace

platform

bsp

cpu_cortexa53linux SW Files

libs

logiVIOF_DRM

hls_color

grenccm_hls

nofilter_hls

sobel_hls

third_party

siha_manager

bin

Figure 12: The Folder Structure

Folder Purpose
INSTALLATION ROOT This folder contains the start.html page – the jump-start

navigation page through the reference design.
data Additional hardware documentation/datasheets/manuals.
doc Project documentation.
vivado

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 21 of 70

vivado_dfx_idf_sem This folder contains the complete Vivado project and files
necessary for regenerating project.

 data Design constraints files (XDC).
 srcs Block design GUI script and HDL wrappers.
 scripts TCL scripts to create block design from scratch.
 fpga ZCU102 reference design bitstreams.
hardware
 bsp Xylon Linux user space Board Support Package (BSP);

custom Xylon BSP compatible with the Xilinx Vitis. It
enables users to quickly build Linux User space
applications within the Vitis workspace.

 drivers Standalone (bare-metal) drivers for logicBRICKS IP cores
with documentation and examples.

 logicbricks/if Xylon custom IP core interfaces (bus definitions).
 logicbricks/eval Evaluation logicBRICKS IP cores. IP cores’ User’s

Manuals are stored in doc subdirectories.
 hls_color Builded Vitis Vision Library HLS IP cores
 third_party Sources for the SIHA Manager IP. This IP is used for the

clock/reset control of reconfigurable partitions in design.

 sw_services xyl_oslib_lu – Xylon Linux User Space OS

abstraction library for Xilinx– use in Linux User Space
applications.

software
 apps DFX Demo application source files
 libs Libraries source files used by DFX Demo Application
 Linux Petalinux 2021.1 project files
 Vitis_workspace Vitis workspace ready for importing to Vitis 2021.1
binaries
 bin Precompiled Linux DFX Demo files

Table 5: Explanation of the logiREF-DFX-IDF folder structure

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 22 of 70

4 GETTING THE IP LICENSES

4.1 Getting logicBRICKS IP Licences

The logiREF-DFX-IDF installation comes with the evaluation versions of the logicBRICKS IP cores,

and in order to be able to change the provided reference designs, you need to request the proper
licenses from Xylon.

Please contact Xylon Technical Support Service support@logicbricks.com and immediately provide
your Ethernet MAC ID number or Sun Host ID.

For instructions how to find your Ethernet MAC or host ID, please visit:
http://www.logicbricks.com/Documentation/Article.aspx?articleID=KBA-01186-M0JXKD..

For each logicBRICKS IP core used in the logiADAK-VDF-ZU reference designs Xylon will generate
and send to you separated e-mails with the license keys (file) and full instructions for setting up the
license key and downloading the logicBRICKS IP core. Please follow the provided instructions.

If you experience any troubles during the registration process, please contact Xylon Technical
Support Service – support@logicbricks.com.

Figure 13: E-mail with logicBRICKS License and Download Instructions

mailto:support@logicbricks.com
http://www.logicbricks.com/Documentation/Article.aspx?articleID=KBA-01186-M0JXKD
mailto:support@logicbricks.com

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 23 of 70

4.2 Getting the Xilinx HDMI 1.4/2.0 Transmitter Subsystem License

The logiADAK-VDF-ZU reference design comes with the the Xilinx HDMI 1.4/2.0 Transmitter
Subsystem hierarchical IP, and in order to be able to change the provided reference designs, a valid
license for the IP Core Bundle is needed. The HDMI 1.4/2.0 Transmitter Subsystem is a hierarchical
IP that bundles a collection of HDMI IP sub-cores and outputs them as a single IP.

Digital code vouchers for the Xilinx HDMI 1.4/2.0 Transmitter Subsystem IP are delivered by Xylon to
all buyers of the logiVID-ZU Evaluation Kit for use with the logiADAK-VDF-ZU reference design. Xylon
does not offer an alternative direct method of acquiring the license. Voucher codes can only be
redeemed once.

To redeem the voucher code for the license given to you by Xylon, please perform the following steps:

1. Go to the following link www.xilinx.com/getproduct and login with your Xilinx account.
2. After logging in you should see the page shown in Figure 14.
3. Input the voucher code in the section where it says “Have a Voucher to Redeem?” and then hit

Redeem Now.
4. You will then get asked if you want to redeem your voucher for “LogiCORE, HDMI, Site

License” and after saying yes it will populate the Certificated Bases Licenses section with the
newly added license option. You can now select it there and generate the license which is tied
to your desired Ethernet MAC ID number.

Figure 14: Xilinx License Page

If you experience any trouble during the redeeming process, please contact Xylon Technical Support
Service – support@logicbricks.com.

http://www.xilinx.com/getproduct
mailto:support@logicbricks.com

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 24 of 70

5 LOGIREF-DFX-IDF REFERENCE DESIGN

5.1 logiREF-DFX-IDF SoC Design and Memory Layout

logiREF-DFX-IDF contains four video camera Vitis platform design utilizing ZCU102 board and four
Xylon GMSL2 video cameras with Xylon’s GMSL2 FMC daughter card. Xylon’s platform for the
targeted hardware kit is designed following Xilinx’s Vitis Unified Software Platform Documentation,
UG1400 (v2021.1). Platform design is based on the Xylon’s VDF Reference Design functionality with
addition of the Dynamic Function eXchange functionality (DFX) that is used for partial reconfiguration
of dedicated FPGA regions with HLS C-based filters. Filter implementations provide simple examples
how to implement C-code based hardware accelerators in the Programmable Logic with usage of
Vivado HLS tool and Vivado IP packager.

Xilinx® Zynq® UltraScale+
TM

 MPSoC - ZU9EG – Programmable Logic

XILINX IPCPU FPGA
Static

logicBRICKSMEMORYDIGITAL
MIXED

SIGNAL

3RD PARTY

IP

SD Card

DDR3

AXI4

AXI4

AXI4

AXI4

AXI4-Lite

logiWIN_3

Versatile Video

Controller

logiWIN_2

Versatile Video

Controller

logiWIN_1

Versatile Video

Controller

logiWIN_0

Versatile Video

Controller

Processing System

Conectivity SDIO

Memory

Controller

ARM

Cortex-A53
ARM

Cortex-A53
ARM

Cortex-A53
ARM

Cortex-A53

ARM

Mali-400 MP2

AXIS

AXIS

AXIS

AXIS

AXI4

DISPLAY

logiCVC-ML

Multilayer

Compact Video

Controller

AXIS

AXIS Switch_1

AXIS

AXIS Switch_0

CSI-2

CSI-2GMSL2

Camera System

GMSL2

Camera System

CSI-2

CSI-2GMSL2

Camera System

GMSL2

Camera System MIPI CSI-2

Rx_1

MIPI CSI-2

Rx_0

AXI4-Lite

AXI4-Lite

FPGA
Reconfigurable

Partitions

AXI4
siha_manager

AXI4

AXI4

AXI4

AXI4

AXI4-Lite

AXI4-Lite

AXI4-Lite

AXI4-Lite

AXI4-Lite

Z
y

n
q

 U
lt

ra
S

c
a

le
+

 P
ro

c
e

s
s

in
g

 s
y

s
te

m

AXI4

AXI4-Lite

AXI4

AXI4-Lite

AXI4

AXI4-Lite

AXI4

AXI4-Lite

rp_filter_0

rp_filter_0

rp_filter_0

rp_filter_0

decoupler_1

decoupler_2

decoupler_3

decoupler_0

HDMI

output

SEM IP

Figure 15: logiREF-DFX-IDF MPSoC Design Block Diagram

(Clock Generator Module and other utility IP cores are not shown)

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 25 of 70

The Figure 16 shows the memory layout of video buffers. Each logiCVC layer has its own memory
space reserved and multiple video buffers (not shown). Four filters in reconfigurable partition process
inputs from logiWINs and results are transferred to be used by four logiCVC layers. The Grid Overlay
logiCVC layer is used by the application software to display filter, IP statistics and other information.

software application

0x70000000 logiWIN_0

logiWIN_1

logiWIN_2

logiWIN_3

0x72000000

0x74000000

0x76000000

logiCVC, layer 2rp_filter_1

logiCVC, layer 3rp_filter_2

logiCVC, layer 4rp_filter_3

logiCVC, layer 1rp_filter_0

Grid Overlay logiCVC, layer 0

Figure 16: logiREF-DFX-IDF Design Memory Layout

Four video cameras are grouped into two pairs: video cameras #1 and #2 and video cameras #3 and
#4. Each pair is connected to a dedicated dual link GMSL2 deserializer on the FMC daughter card.
One camera in the pair is connected through the link A, and the other through the link B. Since these
are 2.3 Mpix video cameras outputting video signal at 30 fps rate, a single 4-lane MIPI interface has
enough bandwidth to transfer video signals from both video cameras. Deserializers are configured for
transfer rate of 1200 Mb/s per lane to cater for such video signals on a single MIPI port. Each MIPI
port in the Receiver Subsystem is connected to one Xilinx MIPI CSI-2 RX IP core decoding MIPI to
AXI4-Stream with accompanied virtual channel information: VC0 for video signal coming from one
video camera (GMSL2 link A), and VC1 for video signal coming from the other video camera (GMSL2
link B) on the same GMSL2 deserializer device. Xilinx MIPI CSI-2 RX IP core is a MIPI CSI Controller
Subsystem IP that requires licensing. There are no licenses available as part of Vivado Design Suite
installation, regardless of the installed version and/or package. License, either purchased or
evaluation can be obtained from Xilinx (https://www.xilinx.com/products/intellectual-property/ef-di-
mipi-csi-rx.html#overview).

https://www.xilinx.com/products/intellectual-property/ef-di-mipi-csi-rx.html#overview
https://www.xilinx.com/products/intellectual-property/ef-di-mipi-csi-rx.html#overview

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 26 of 70

More information about the IP core can be found in the Xilinx product guide:
https://www.xilinx.com/support/documentation/ip_documentation/mipi_csi2_rx_subsystem/v4_1/pg23
2-mipi-csi2-rx.pdf.

AXI4-Stream Switch IP core separates incoming AXI4-Stream into two streams according to the
virtual channel information, and feeds two logiWIN IP core instances simultaneously. Each logiWIN IP
core instance stores the video image in the assigned video buffer matching the source image address
for the filters inside the reconfigurable region for that channel. Further, logiCVC-ML IP core layers are
mapped so that they show video images from four reconfigurable regions filter outputs, and display it
on the HDMI output. When these video images are to be displayed in a tiled fashion, each logiWIN IP
core instance performs scaling down and adequate positioning of the video image on the monitor.
Video cameras provide video signal in 8-bit YUV format (YUV422). This format is preserved trough
the input video chain, but is then converted to 32-bit RGB format (ARGB888) in the logiWIN IP core,
and as such stored into video buffer. This means that the corresponding layer of the logiCVC-ML IP
core instance is configured for RGB888 pixel format. As explained before, there is additional
conversion to and from RGBA format implemented within HLS filters, and not shown here.

Table 5.1 shows how logiCVC layers are configured and organised with respect to design features.

The first layer is used as the overlay grid layer, and the other four layers are used for outputs from the
reconfigurable partitions filters.

Table 5.1: logiCVC-ML IP Core Layer Configuration and Assignment

logiCVC-ML IP
core layer

Layer format
Alpha blending

type
Buffer offset Design feature

layer 0 32bpp – RGB Pixel 1080 lines Overlay grid

layer 1 32bpp – RGB Pixel 1080 lines RP Filter 0 Result

layer 2 32bpp – RGB Pixel 1080 lines RP Filter 1 Result

layer 3 32bpp – RGB Pixel 1080 lines RP Filter 2 Result

layer 4 32bpp – RGB Pixel 1080 lines RP Filter 3 Result

5.1.1.1 Registers Address Map

All IP cores in the reference design that have their AXI4-Lite interface connected to AXI4
infrastructure for register access have a physical base address and address range assigned. These
assignment present registers address map accessible by the MPSoC’s APU and all other PL and PS
modules that are masters in this AXI4 infrastructure. In the logiREF-DFX-IDF Reference Design, the
APU is the only master through the M_AXI_HPM0_FPD PS-PL interface port. The registers address
map is presented in Table 5.2.

Table 5.2: logiREF-DFX-IDF Reference Design Registers Address Map

IP core instance Base address High address Range [kB]

rp_filter_0 0x00_8002_0000 0x00_8002_FFFF 64

rp_filter_0_r 0x00_8007_0000 0x00_8007_FFFF 64

rp_filter_1 0x00_8009_0000 0x00_8009_FFFF 64

rp_filter_1_r 0x00_800B_0000 0x00_800B_FFFF 64

rp_filter_2 0x00_800D_0000 0x00_800D_FFFF 64

rp_filter_2_r 0x00_800E_0000 0x00_800E_FFFF 64

rp_filter_3 0x00_800F_0000 0x00_800F_FFFF 64

rp_filter_3_r 0x00_8012_0000 0x00_8012_FFFF 64

logicvc_0 0x00_8001_0000 0x00_8001_FFFF 64

https://www.xilinx.com/support/documentation/ip_documentation/mipi_csi2_rx_subsystem/v4_1/pg232-mipi-csi2-rx.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mipi_csi2_rx_subsystem/v4_1/pg232-mipi-csi2-rx.pdf

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 27 of 70

IP core instance Base address High address Range [kB]

logiwin_0 0x00_8003_0000 0x00_8003_FFFF 64

logiwin_1 0x00_8004_0000 0x00_8004_FFFF 64

logiwin_2 0x00_8005_0000 0x00_8005_FFFF 64

logiwin_3 0x00_8006_0000 0x00_8006_FFFF 64

v_hdmi_tx 0x00_8010_0000 0x00_8011_FFFF 128

vid_phy_controller 0x00_800C_0000 0x00_800C_1FFF 64

axi_iic_0 0x00_8000_0000 0x00_8000_0FFF 4

mipi_csi2_rx_subsystem_0 0x00_8008_0000 0x00_8008_1FFF 8

mipi_csi2_rx_subsystem_1 0x00_800A_0000 0x00_800A_1FFF 8

SIHA_Manager 0x00_8013_0000 0x00_8013_1FFF 64

5.2 Video Input/Output Synchronization

Hardware synchronization is implemented between the logiWIN and logiCVC-ML IP cores. SoC
systems implementing video input units have video input frame rates and video output frame rates
rarely equal, and need to implement frame rate conversions from lower to higher frame rate, or vice
versa.

5.2.1 logiWIN Hardware Buffering Implementation

Double/triple buffering state machine is placed outside the logiWIN. The logiWIN output pin
curr_vbuff[1:0] sends to the double/triple buffer external controller information to which buffer the
logiWIN currently writes. On the input pin next_vbuff[1:0] the double/triple buffer external controller
sends to the logiWIN information to which buffer the next frame should be written. For double
buffering next_vbuff value changes between 0 and 1, and for triple buffering between 0, 1 and 2. If
double/triple buffering is not in use, the next_vbuff must be set to 0. Output signal sw_vbuff_req
signals to the external controller that the current buffer curr_vbuff[1:0] is written and requests buffer
switching. External controller grants buffer switching over sw_vbuff_grant together with the pointer to
the next buffer next_vbuff[1:0].

5.2.2 logiCVC-ML Hardware Buffering Implementation

External video synchronization requires three separate frame buffers (buffer_0, buffer_1 and
buffer_2 implemented in the video memory). In SoC designs with the logiCVC-ML display controller IP
core, three frame buffers must be setup for every logiCVC-ML graphic layer. The triple buffering
method provides an advantage over the double buffering synchronization method, since the video
input units do not have to wait on buffers swapping as there is always a spare frame buffer for new
frame data writing.

To support this feature, the logiCVC-ML uses video input synchronization control port which

consists of e_curr_vbuff[C_NUM_OF_LAYERS*2-1:0] and e_switch_vbuff[C_NUM_OF_LAYERS-1:0]
input signals, and e_next_vbuff [C_NUM_OF_LAYERS*2-1:0] and
e_switch_grant[C_NUM_OF_LAYERS-1:0] output signals.

With the input signals e_current_vbuff[n*2+1:n*2] and e_switch_vbuff[n] external video source
signals to logiCVC-ML layer n the currently written buffer and when to switch buffers (typically on the
end of its active frame of external video source). With the output signal

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 28 of 70

e_switch_grant[C_NUM_OF_LAYERS-1:0] the logiCVC-ML grants the video source to start writing its
next frame to e_next_vbuff[n*2+1:n*2] buffer.

The logiCVC-ML IP core is constantly sampling e_current_vbuff and e_switch_vbuff inputs with the

memory clock. When e_switch_vbuff high state is detected, the logiCVC samples e_current_vbuff and
asserts e_switch_grant along with the associated e_next_vbuff. External logic should constantly
sample e_switch_grant signal, and when it detects that e_switch_grant is high, it should sample
e_next_vbuff and de-assert e_switch_vbuff. When logiCVC detects e_switch_vbuff low, it de-asserts
e_switch_grant signal on the next memory clock cycle. e_switch_vbuff and e_switch_grant signals are
used as handshake signals between logiCVC and external logic. This kind of implementation supports
buffers switching between logiCVC and external logic running on synchronous and on asynchronous
clocks.

To enable external frame buffer synchronization for a specific graphic layer, user has to enable it by
setting the EN_EXT_VBUFF_SW bit to 1 in the corresponding layer control register.

If external video input signals are connected to the logiCVC-ML’s video input synchronization
control port and synchronization are turned off (EN_EXT_VBUFF_SW=0), logiCVC-ML will always
signal the external video input to write data to buffer 0, i.e. e_next_vbuff[n*2+1:n*2]=0. At the same
time, logiCVC-ML will work in the CPU synchronization mode so it will read memory buffer, which is
defined with layer address register.

0 1logiCVC-ML

0 0 1 2 0 1 2

1 2 0 1 1 2 0 1 1 2

0 0 1Video input

SW_VBUFF

CURR_VBUFF NEXT_VBUFF

logiCVC-ML triple buffer cycle

Video input triple buffer cycle
Video input

frame period

CVC

frame

period

0

Figure 17: Triple Buffering Example when logiCVC-ML Refresh Rate is Higher than Video Input

1 2 0 1 20 0 1 2

0 0 0 0 1 2 0 0 1 2 0 0

SW_VBUFF

CURR_VBUFF NEXT_VBUFF

logiCVC-ML

Video input

Video input triple buffer cycle

logiCVC-ML triple buffer cycle
logiCVC-ML

frame period

Video in

frame

period

Figure 18: Triple Buffering Example when logiCVC-ML Refresh Rate is Lower than Video Input

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 29 of 70

logiCVC MEM CLK

E_SWITCH_VBUFF

E_SWITCH_GRANT

E_CURRENT_VBUFF

E_NEXT_VBUFF

EXT VIDEO IN CLK

2

0

0

2

0 1

0 1

Figure 19: External buffer control signals timing diagram

5.3 Xylon logicBRICKS IP Core Configuration

In the reference design there are several Xylon IP cores used. There are logicBRICKS IP cores,
which are delivered as evaluation IP cores and other auxiliary Xylon IP cores which are license-free
and in source code. More information on Xylon logicBRICKS library of IP cores and its concept, as
well as evaluation editions can be found in chapter LOGICBRICKS IP CORES

Auxiliary Xylon IP cores used in the reference design is TUSER Trimmer IP. TUSER Trimmer IP core
is used to adjust TUSER control signal on AXI4-Stream channels driven by Xilinx MIPI CSI2-RX IP
cores.

The logicBRICKS IP cores are:

 logiCVC-ML – Compact Video Controller Multilayer Alpha Blending (see section 2.3.1
logiCVC-ML Compact Multilayer Video Controller for details).

 logiWIN – Versatile Video Input (see section 2.3.2 logiWIN Versatile Video Input for details).

Configuration of logiCVC-ML IP core instance in the VDF Reference Design is:

 Register interface: AXI4-Lite slave

 Register interface data width: 32 bits

 Readable registers: yes

 Memory interface: AXI4 master

 Memory interface data width: 128 bits

 Memory interface burst size: 64 words

 Number of layers: 5

 Background layer: no

 External video input: no

 Layer configuration: see Table 5.1

 Layer size position: yes

 Triple buffering interface: yes

 Use DSP resources: yes

 Output video type: parallel video interface with separate synchronization signals

 Output video interface format: 24-bit RGB
Configuration of logiWIN IP core instances 0 to 3 in the VDF Reference Design is:

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 30 of 70

 Register interface: AXI4-Lite slave

 Register interface data width: 32 bits

 Readable registers: yes

 Memory interface: AXI4 master

 Memory interface data width: 64 bits

 Memory interface burst size: 64 words

 Row stride: 2048 pixels

 Buffer switch offset: 1080 lines

 Input video type: 16-bit AXI4-Stream

 Input video format: 8-bit YUV422

 Maximum input resolution: 2048 (pixels/lines)

 Output video image storage format: ARGB888

 Output video image storing method: burst by burst

 Maximum output resolution: 2048 (pixels/lines)

 Horizontal scaling: yes

 Vertical scaling: yes

 Scaler uses: DSP48 components

 Cascade scaling: no

 Parallel interpolation: no

5.4 SIHA IP Manager

The SIHA Manager IP is provided directly from Xilinx and it is used for control of four dedicated
configurable regions. This IP manages clocks, resets and AXI$ cache/port signalling between static
and reconfigurable regions. Also, the SIHA Manager IP is directly in control of decoupling logic
between static and reconfigurable partitions by using dedicated decouple signals for all four Xilinx’s
DFX decoupler IP.
More about DFX Decoupler can be found at https://www.xilinx.com/products/intellectual-property/dfx-
decoupler.html). In this design, the SIHA IP Manager is configured for total of nine reconfigurable
slots, but only four are used in design.

Figure 20: SIHA Manager IP Configuration

https://www.xilinx.com/products/intellectual-property/dfx-decoupler.html
https://www.xilinx.com/products/intellectual-property/dfx-decoupler.html

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 31 of 70

5.5 SEM IP Controller

The IP Soft Error Mitigation (SEM) Controller is an automatically configured, pre-verified solution to
detect and correct soft errors in Configuration Memory of Xilinx FPGAs. Soft errors are unintended
changes to the values stored in state elements caused by ionizing radiation. The SEM Controller does
not prevent soft errors; however, it provides a method to better manage the system-level effects of
soft errors. Proper management of these events can increase reliability and availability, and reduce
system maintenance and downtime costs. More info about the IP can be found here (REF [4]).

In logiREF-DFX-IDF design SEM IP is integrated inside the static partition and it is used in Mitigation
and Testing mode, with Error injection and Error correction functionality enabled.

Figure 21: SEM IP Configuration

5.6 Restoring Full MPSoC Design from Xylon Deliverables

Xylon provides all necessary design files to enable full project restore in the Xilinx Vivado ML
2021.1.

If the logiREF-DFX-IDF Vivado project was never opened before in current user environment, the
script for generating the project file should be used first as it should properly setup the project and
generate the Vivado project file (.xpr). The project creation script can be found under the project root
installation folder:

logiREF-DFX-IDF/deliverables/vivado/vivado_dfx_idf_sem/scripts/project.tcl

The script should either be used from the command line (running Vivado in batch mode) or it can be
sourced from within Vivado tcl console if Vivado was started in project mode. Linux users should
switch to the folder where script is located before sourcing the script to avoid possible permission
issues. Windows batch file create_project.bat is provided for convenience for Windows users.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 32 of 70

The following IDF related properties setting and the IDF patch application instructions had
to be applied for Vivado 2021.1 release used. The IDF patch may not be necessary or
different properties might have to be applied for later Vivado versions. Please read the
Xilinx IDF related documentation and set the project properties accordingly.

Before opening and building design, additional properties for the successful DFX and IDF solution
needs to be set trough the Vivado tcl console, or those can be easily set in Vivado_init.tcl file located
at {Vivado installation folder}\scripts folder. If file doesn’t exist, create the file and add commands
below:

set_param project.enableVersalIPIPRFlow 1
set_param hd.enableIDFPR 1
set_param hd.enableIDFDRC 1
set_param hd.enableIDFPRFanoutSupport false
set_param hd.enableUnifiedRoutingFootprint false

After setting those parameters, additional Vivado patch for DFX/IDF solution has to be applied for
proper design to be built. This Vivado patch is located inside the compressed
AR000032523_vivado_2021_1_preliminary_rev1.zip file obtained from the Xilinx support. Just extract
the whole content to the {VIVADO_INSTALL_DIRECTORY/patches}. If patches directory did not exist,
create it manually. After editing the Vivado initialization script and applying Vivado patch for DFX/IDF
solution, the project can be opened using the project file located at

logiREF-DFX-IDF/vivado/vivado_dfx_idf_sem/hp130ba/hp130.xpr

Finally, the complete design can be built from the scratch.

Before running the build, designer can select which of those three options will be default. In this case,
the ‘No filter’ option is selected for all four BDCs.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 33 of 70

Figure 22: logiREF-DFX-IDF Vivado IP Integrator Block Diagram

This is done by double clicking DFX blocks and selecting active synthesis source. Please, make sure
the option “Enable Dynamic Function eXchange on this container” is properly selected as shown in
the Figure 23.

Figure 23: BDC Customization Dialog Box

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 34 of 70

Finally, the design opened should be validated to make sure everything was properly initialized, and
the bitstream can be generated. It is a complex design, and it will take a while before all design runs
are finished and bitstreams generated. Of course, if no design changes were needed, design rebuild
is not necessary since all bitstreams and the hardware export file (XSA file) are already generated.

Please note that DFX workflow requires manual floorplanning for all DFX blocks (reconfigurable
partitions) and this is already defined in design constraints files. There are three runs defined, so this
can be time consuming, but the result should be as shown on Design Runs tab upon completion.

Figure 24: Design Runs Statistics

Single configuration run produces the complete bitstream for that configuration (static + reconfigurable
combined) and four additional partial bitstreams. Those partial bitstreams from the first run are partial
bitstreams for every reconfigurable partition. So, for the first run, four ‘No filter’ partials are created.
Same goes on for the second and the third run, where four CCM Green filter partials and four Sobel
partials are created respectively. Total number of partial bitstreams that will be used in demonstrating
DFX functionality is twelve, as there are three bitstreams for each of four reconfigurable partitions.
The hardware (.xsa) file exported contains the default configuration setup that is used for building the
Petalinux image and application. This hardware image can be used as is by the SW developer who
can start developing application using default filters inside reconfigurable partitions. In order to
change the filter loaded into reconfigurable partition from default to some other selected and already
preloaded into the PSU RAM, some interaction is still needed with the FPGA manager utility within the
application to reprogram partitions. The example how it could be done is given within the logiREF-
DFX-IDF application demo.

A closer look at implemented FPGA design as shown in the Figure 26 illustrates which portions of

FPGA device were used and defined as reconfigurable regions. The area outside the configurable
partitions is available to the static portion of the design.

The placement of reconfigurable regions is purely provisional and is totally up to designer to achieve it
correctly by following the DFX workflow rules. The same floorplan can be seen when opening the
second and third implementation run. It is visible that the placement of reconfigurable partitions is
exactly the same for each run, only the utilization of used logic inside partitions depends on
complexity of the filter selected. The area reserved must be large enough to provide enough space for
the most complex filter to be placed inside of that particular area.

The static partition pblock and the reconfigurable pblocks floorplan are defined in the
physical_constraints.xdc file:

create_pblock rp_pblock_0
add_cells_to_pblock [get_pblocks rp_pblock_0] [get_cells -quiet [list hp130ba_i/rp_filter_0]]
resize_pblock [get_pblocks rp_pblock_0] -add {CLOCKREGION_X0Y6:CLOCKREGION_X0Y6}
set_property CONTAIN_ROUTING 1 [get_pblocks rp_pblock_0]
set_property EXCLUDE_PLACEMENT 1 [get_pblocks rp_pblock_0]

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 35 of 70

set_property SNAPPING_MODE ON [get_pblocks rp_pblock_0]

create_pblock rp_pblock_1
add_cells_to_pblock [get_pblocks rp_pblock_1] [get_cells -quiet [list hp130ba_i/rp_filter_1]]
resize_pblock [get_pblocks rp_pblock_1] -add {CLOCKREGION_X2Y6:CLOCKREGION_X2Y6}
set_property CONTAIN_ROUTING 1 [get_pblocks rp_pblock_1]
set_property EXCLUDE_PLACEMENT 1 [get_pblocks rp_pblock_1]
set_property SNAPPING_MODE ON [get_pblocks rp_pblock_1]

create_pblock rp_pblock_2
add_cells_to_pblock [get_pblocks rp_pblock_2] [get_cells -quiet [list hp130ba_i/rp_filter_2]]
resize_pblock [get_pblocks rp_pblock_2] -add {CLOCKREGION_X0Y3:CLOCKREGION_X0Y3}
set_property CONTAIN_ROUTING 1 [get_pblocks rp_pblock_2]
set_property EXCLUDE_PLACEMENT 1 [get_pblocks rp_pblock_2]
set_property SNAPPING_MODE ON [get_pblocks rp_pblock_2]

create_pblock rp_pblock_3
add_cells_to_pblock [get_pblocks rp_pblock_3] [get_cells -quiet [list hp130ba_i/rp_filter_3]]
resize_pblock [get_pblocks rp_pblock_3] -add {CLOCKREGION_X2Y4:CLOCKREGION_X2Y4}
set_property CONTAIN_ROUTING 1 [get_pblocks rp_pblock_3]
set_property EXCLUDE_PLACEMENT 1 [get_pblocks rp_pblock_3]
set_property SNAPPING_MODE ON [get_pblocks rp_pblock_3]

create_pblock static_pblock
add_cells_to_pblock [get_pblocks static_pblock] [get_cells -quiet [list SEM_UART_inst
hp130ba_i/static_partition]]
resize_pblock [get_pblocks static_pblock] -add {CLOCKREGION_X3Y6:CLOCKREGION_X3Y6
CLOCKREGION_X1Y6:CLOCKREGION_X1Y6 CLOCKREGION_X0Y5:CLOCKREGION_X3Y5
CLOCKREGION_X3Y4:CLOCKREGION_X3Y4 CLOCKREGION_X0Y4:CLOCKREGION_X1Y4
CLOCKREGION_X1Y3:CLOCKREGION_X3Y3 CLOCKREGION_X0Y0:CLOCKREGION_X3Y2}
set_property SNAPPING_MODE FINE_GRAINED [get_pblocks static_pblock]

These constraints will place our four pblocks on different sections in actual FPGA (Figure 26).
Everything that is not part of these four reconfigurable partitions is placed inside the defined static
pblock section (gray color).

Additional set of constraints needs to be set to enable isolation between these pblocks. Those
isolation constraints were set following the Isolation Design Flow described in (REF [3]). This flow
defines proper setting for isolation modules. I Isolation constraints were defined in
im_pblocks_constraints.xdc file:

######## Constraints for isolation of IMs inside RPs and Static Block isolation
set_property HD.ISOLATED true [get_cells hp130ba_i/static_partition]
set_property HD.ISOLATED true [get_cells hp130ba_i/rp_filter_0/im_wrapper]
set_property HD.ISOLATED true [get_cells hp130ba_i/rp_filter_1/im_wrapper]
set_property HD.ISOLATED true [get_cells hp130ba_i/rp_filter_2/im_wrapper]
set_property HD.ISOLATED true [get_cells hp130ba_i/rp_filter_3/im_wrapper]

####### Constraints for RMs inside Reconfigurable blocks
create_pblock im_0

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 36 of 70

add_cells_to_pblock [get_pblocks im_0] [get_cells -quiet [list hp130ba_i/rp_filter_0/im_wrapper]]
resize_pblock [get_pblocks im_0] -add {SLICE_X1Y362:SLICE_X27Y417}
resize_pblock [get_pblocks im_0] -add {BUFCE_LEAF_X8Y24:BUFCE_LEAF_X151Y27}
resize_pblock [get_pblocks im_0] -add {BUFCE_ROW_FSR_X0Y6:BUFCE_ROW_FSR_X38Y6}
resize_pblock [get_pblocks im_0] -add {DSP48E2_X0Y146:DSP48E2_X4Y165}
resize_pblock [get_pblocks im_0] -add {HARD_SYNC_X0Y12:HARD_SYNC_X7Y13}
resize_pblock [get_pblocks im_0] -add {RAMB18_X0Y146:RAMB18_X3Y165}
resize_pblock [get_pblocks im_0] -add {RAMB36_X0Y73:RAMB36_X3Y82}
set_property SNAPPING_MODE FINE_GRAINED [get_pblocks im_0]

create_pblock im_1
add_cells_to_pblock [get_pblocks im_1] [get_cells -quiet [list hp130ba_i/rp_filter_1/im_wrapper]]
resize_pblock [get_pblocks im_1] -add {SLICE_X58Y362:SLICE_X75Y418}
resize_pblock [get_pblocks im_1] -add {BUFCE_LEAF_X312Y24:BUFCE_LEAF_X407Y27}
resize_pblock [get_pblocks im_1] -add {BUFCE_ROW_FSR_X77Y6:BUFCE_ROW_FSR_X102Y6}
resize_pblock [get_pblocks im_1] -add {DSP48E2_X12Y146:DSP48E2_X14Y165}
resize_pblock [get_pblocks im_1] -add {HARD_SYNC_X14Y12:HARD_SYNC_X19Y13}
resize_pblock [get_pblocks im_1] -add {RAMB18_X7Y146:RAMB18_X9Y165}
resize_pblock [get_pblocks im_1] -add {RAMB36_X7Y73:RAMB36_X9Y82}
set_property SNAPPING_MODE FINE_GRAINED [get_pblocks im_1]

create_pblock im_2
add_cells_to_pblock [get_pblocks im_2] [get_cells -quiet [list hp130ba_i/rp_filter_2/im_wrapper]]
resize_pblock [get_pblocks im_2] -add {SLICE_X1Y182:SLICE_X27Y236}
resize_pblock [get_pblocks im_2] -add {BUFCE_LEAF_X8Y12:BUFCE_LEAF_X151Y15}
resize_pblock [get_pblocks im_2] -add {BUFCE_ROW_FSR_X0Y3:BUFCE_ROW_FSR_X38Y3}
resize_pblock [get_pblocks im_2] -add {DSP48E2_X0Y74:DSP48E2_X4Y93}
resize_pblock [get_pblocks im_2] -add {HARD_SYNC_X0Y6:HARD_SYNC_X7Y7}
resize_pblock [get_pblocks im_2] -add {RAMB18_X0Y74:RAMB18_X3Y93}
resize_pblock [get_pblocks im_2] -add {RAMB36_X0Y37:RAMB36_X3Y46}
set_property SNAPPING_MODE FINE_GRAINED [get_pblocks im_2]

create_pblock im_3
add_cells_to_pblock [get_pblocks im_3] [get_cells -quiet [list hp130ba_i/rp_filter_3/im_wrapper]]
resize_pblock [get_pblocks im_3] -add {SLICE_X58Y242:SLICE_X75Y297}
resize_pblock [get_pblocks im_3] -add {BUFCE_LEAF_X312Y16:BUFCE_LEAF_X407Y19}
resize_pblock [get_pblocks im_3] -add {BUFCE_ROW_FSR_X77Y4:BUFCE_ROW_FSR_X102Y4}
resize_pblock [get_pblocks im_3] -add {DSP48E2_X12Y98:DSP48E2_X14Y117}
resize_pblock [get_pblocks im_3] -add {HARD_SYNC_X14Y8:HARD_SYNC_X19Y9}
resize_pblock [get_pblocks im_3] -add {RAMB18_X7Y98:RAMB18_X9Y117}
resize_pblock [get_pblocks im_3] -add {RAMB36_X7Y49:RAMB36_X9Y58}
set_property SNAPPING_MODE FINE_GRAINED [get_pblocks im_3]

set_property HD.ISOLATED_EXEMPT true [get_cells
hp130ba_i/static_partition/display_hier/vid_phy_controller_0/inst/gt_usrclk_source_inst/tx_mmcm.GT
0_TX_MMCM_CLKOUT1_OBUFTDS_INST]
set_property HD.ISOLATED_EXEMPT true [get_cells -hierarchical -filter {PRIMITIVE_TYPE ==
CLOCK.BUFFER.BUFGCE}]
set_property HD.ISOLATED_EXEMPT true [get_cells -hierarchical -filter {PRIMITIVE_TYPE ==
CLOCK.BUFFER.BUFG_GT}]

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 37 of 70

Before continuing design runs and implementation, user can use Vivado rule checks just to confirm
that everything regarding floorplan for DFX and IDF is set correctly. At opened synthesized run, just
run the DRC check for the DFX and Isolation flow. For Isolation flow, select Provenance and
Constraints checks.

Figure 25: DFX IDF after synthesis DRC Check

If everything is ok with design, some advisory may be presented, but no violations should be noticed
in result file:

In this reference design, IDF constraints (HD.ISOLATED) main implementation is set directly through
Vivado GUI. For other two child runs, those constrains are added as post synthesis script commands.

set_property STEPS.SYNTH_DESIGN.TCL.POST [get_files config_0_greenccm.tcl -of [get_fileset
utils_1]] [get_runs greenccm_inst_0_synth_1]
set_property STEPS.SYNTH_DESIGN.TCL.POST [get_files config_1_greenccm.tcl -of [get_fileset
utils_1]] [get_runs greenccm_inst_1_synth_1]
set_property STEPS.SYNTH_DESIGN.TCL.POST [get_files config_2_greenccm.tcl -of [get_fileset
utils_1]] [get_runs greenccm_inst_2_synth_1]
set_property STEPS.SYNTH_DESIGN.TCL.POST [get_files config_3_greenccm.tcl -of [get_fileset
utils_1]] [get_runs greenccm_inst_3_synth_1]
set_property STEPS.SYNTH_DESIGN.TCL.POST [get_files config_0_sobel.tcl -of [get_fileset
utils_1]] [get_runs sobel_inst_0_synth_1]
set_property STEPS.SYNTH_DESIGN.TCL.POST [get_files config_1_sobel.tcl -of [get_fileset
utils_1]] [get_runs sobel_inst_1_synth_1]
set_property STEPS.SYNTH_DESIGN.TCL.POST [get_files config_2_sobel.tcl -of [get_fileset
utils_1]] [get_runs sobel_inst_2_synth_1]
set_property STEPS.SYNTH_DESIGN.TCL.POST [get_files config_3_sobel.tcl -of [get_fileset
utils_1]] [get_runs sobel_inst_3_synth_1]

For example, if we want to set that isolation property on GREEN CCM filter at reconfigurable partition
0, we can just set that property directly to design checkpoint.

set_property HD.ISOLATED true [get_cells im_wrapper] -quiet

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 38 of 70

 write_checkpoint -force -noxdef greenccm_inst_0.dcp

For easy reference design build, these steps are already incorporated in project.tcl file, where all

isolation property checkpoints are properly set and configured.

Final step before starting implementation runs is setting the pre opt design scripts for child runs. This
is also already set in project.tcl file.

set_property STEPS.OPT_DESIGN.TCL.PRE [get_files child_0_impl_1_pre_opt.tcl -of [get_fileset
utils_1]] [get_runs child_0_impl_1]
set_property STEPS.OPT_DESIGN.TCL.PRE [get_files child_1_impl_1_pre_opt.tcl -of [get_fileset
utils_1]] [get_runs child_1_impl_1]

Those tcl files are just applying exactly the same isolation pblocks constraints for the child runs:

read_xdc ../../../data/im_pblocks_constraints.xdc

As we noted before, user doesn’t have to worry about these commands and scripts in this reference
design, because they are already set and prepared at design build from scratch by running
create_project.bat command or sourcing the project.tcl script. After running complete implementation
runs, the result implemented design is show at Figure 26.

Figure 26: Implementation of three config runs (No Filter, CCM Green Filter, Sobel Filter)

As shown in Figure 26, utilization inside configurable partitions varies depending on the filter selected.
It’s important that designer take this level of congestion into consideration while creating a floorplan of
design. The bigger the block, the more resources are available for the filter, and the Vivado tool will
have easier task and complete implementation and routing sooner.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 39 of 70

Resulting twelve partial bitstreams will be generated inside the same Vivado project runs folder. For
the default implementation, those bitstream files are stored in the impl_1 directory, for the second
implementation, files are located in the child_0_impl_1 directory, and for the last implementation run
files are located inside the child_1_impl_1 directory.

Just a side note, for user to check that everything is correctly implemented following the Isolation
design flow, opening implemented design and running DRC Isolation (Implementation) check should
result without any violations.

Figure 27: Implemented DRC Isolation check

This reference design generates a total of 12 partial bitstreams for use in DFX flow. Those partial
bitstreams are named automatically in Vivado Dynamic Function eXchange Wizard. For every
reconfigurable partition, there are three available partials bitstreams. The number of available partial
bitstreams for reconfigurable partitions depends on how many functions (in our case filters) are
available. Resulting partial bitstreams for each reconfigurable partition are shown below:

RP0:

1. hp130ba_i_rp_filter_0_nofilter_inst_0_partial.bin
2. hp130ba_i_rp_filter_0_greenccm_inst_0_partial.bin
3. hp130ba_i_rp_filter_0_sobel_inst_0_partial.bin

RP1:

1. hp130ba_i_rp_filter_1_nofilter_inst_1_partial.bin
2. hp130ba_i_rp_filter_1_greenccm_inst_1_partial.bin
3. hp130ba_i_rp_filter_1_sobel_inst_1_partial.bin

RP2:

1. hp130ba_i_rp_filter_2_nofilter_inst_2_partial.bin
2. hp130ba_i_rp_filter_2_greenccm_inst_2_partial.bin
3. hp130ba_i_rp_filter_2_sobel_inst_2_partial.bin

RP3:

1. hp130ba_i_rp_filter_3_nofilter_inst_3_partial.bin
2. hp130ba_i_rp_filter_3_greenccm_inst_3_partial.bin
3. hp130ba_i_rp_filter_3_sobel_inst_3_partial.bin

The size of a partial bitstream is directly proportional to the size of the region it is reconfiguring. For
example, if the RP is composed of 20% of the device resources, the partial bitstream is roughly 20%
the size of the full design bitstream. Partial bitstreams are fully self-contained, so they are delivered to

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 40 of 70

an appropriate configuration port. All addressing, header, and footer details are contained within these
bitstreams, just as they would be for full configuration bitstreams.
You deliver partial bitstreams to the FPGA through any external non-master configuration mode, such
as JTAG, Slave Serial, or Slave SelectMap. Internal configuration access includes the ICAP (all
devices), PCAP (Zynq-7000 SoC devices), and MCAP (UltraScale and UltraScale+ devices through
PCIe). A partially reconfigured FPGA is in user mode while the partial file is loaded. This allows the
portion of the FPGA logic not being reconfigured to continue functioning while the reconfigurable
partition is modified. More info on this can be found here (REF [1]).

Figure 28: Configuration with partial bitstream

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 41 of 70

5.7 Software Description

5.7.1 Demo application

START

READ AND PARSE
CONFIG.JSON

READ BITSTREAM FILE
SIZES

INITIALIZE CAMERAS AND
DESERIALIZERS

INITIALIZE LOGIWINS

INITIALIZE LOGICVC

INITIALIZE LIBCAIRO
OVERLAY

INITIALIZE SIHA SLOTS

INITIALIZE FILTERS

SHOW GRID MODE

POLL KEYBOARD KEYS AND
BOARD BUTTONS

IF PRESSED
KEYBOARD KEY

YESNO

IF PRESSED
ONBOARD BUTTON

PROCESS INPUT

EXECUTE COMMANDNO YES

IF REGULAR
COMMAND

YESNO

IF QUIT COMMAND NOYES

END

Figure 29: Demo application software block diagram

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 42 of 70

DFX Demo application consists of the initialization part and the main loop part as shown in the Figure
29.

Following functions are used for application initialization:

 bool read_config_file(const char *name, Config &conf)

o Read and parse config.json file using rapidjson library

 bool read_bitstream_sizes()

o Read bitstream file sizes using <sys/stat.h> stat()function

 int plf_configuration()

o Initialize cameras and deserializers using plf+ library

 void logiWIN_init_start(unsigned idx)

o Initialize logiWIN IP indexed with idx and scale input from cameras

 pVideoOutInstT vout_init(char *devpath)

o Initialize logiCVC IP using logiVIOF_DRM library and position and scale CVC layers to
form GRID_MODE, and get CVC layer addresses

 Overlay (struct bo &buffObj, unsigned width, unsigned height)

o Class Overlay constructor is used to initialize overlay using libcairo

 int enable_SIHA_slot(unsigned slot)

o Initialize SIHA slot indexed with slot

 void enable_filter(unsigned slot, unsigned outAddr)

o Initialize filter indexed with slot

After required initializations are done, the application starts in the GRID_MODE by default. The main
loop polls keyboard keys via UART serial console and on board buttons (SW14-18), checks if input
corresponded to regular commands and executes regular command issued.

Application
Initialization

Quit application

GRID_MODE
SINGLE_MODE

CAM0

CAM3

CAM1

CAM2

CAM0 CAM1 CAM2 CAM3

CMD_RIGHT CMD_RIGHT

CMD_RIGHT

CMD_LEFTCMD_LEFTCMD_LEFTCMD_LEFT

CMD_QUIT

CMD_RIGHT CMD_RIGHT

Figure 30: Demo application modes description

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 43 of 70

Demo application consists of two modes as shown in the Figure 30:
1. GRID_MODE - shows 4 cameras in 2x2 grid
2. SINGLE_MODE - shows 1 camera in full screen

In total 5 different screens can be displayed:

1. GRID_MODE
2. SINGLE_MODE - CAM0
3. SINGLE_MODE - CAM1
4. SINGLE_MODE - CAM2
5. SINGLE_MODE - CAM3

The Figure 30 shows how various commands trigger transitions from GRID_MODE to
SINGLE_MODE and vice versa. User can circle through modes using commands CMD_RIGHT and

CMD_LEFT. Commands CMD_KYBD_TOGGLE and CMD_BTN_TOGGLE are used to initiate filter toggling

through the DFX FPGA Manager partial reconfiguration. The CMD_QUIT command is used to exit the

main loop, disable SIHA slots and filters, release the logiWIN and the logiCVC and quit the
application. See how the commands are mapped to user inputs in the Table 5.3 and the Figure 31.

Table 5.3: Application input and corresponding commands

Command name Keyboard Onboard button Command description

CMD_RIGHT ‘d’ KEY_RIGHT circular next mode (see Figure 36)
CMD_LEFT ‘a’ KEY_LEFT circular previous mode (see Figure 36)
CMD_KYBD_TOGGLE ‘t’ toggle filter using keyboard
CMD_BTN_TOGGLE KEY_ENTER toggle filter using on board button
CMD_IDLE do nothing
CMD_QUIT ‘q’ exit main loop and quit demo application
CMD_LOAD_CORRUPTED ‘l’ KEY_UP load corrupted bitstream on CAM0 (PR0)

while no_filter active
CMD_START_SEM ‘m’ start SEM

Figure 31: ZCU102 on board buttons (SW14-18) used in Demo application

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 44 of 70

This demo features one extra bitstream which is intentionally corrupted and it could be displayed to
demonstrate fixing FPGA by DFX partial reconfiguration. It is initiated by:

- pressing ‘l’ on keyboard
- pressing KEY_UP button

Only condition is that Single mode CAM0 no_filter bitstream is active while corresponding key is
pressed. Main loop is stopped while corrupted bitstream is displayed and user is prompted to press
corresponding key to initiate DFX partial reconfiguration of programmable region that corresponds to
CAM0. After finishing, main loop resumes to default demo control commands.

5.7.2 DFX functionality description

Filter toggling implemented in the demo application demonstrates the DFX functionality using FPGA
manager partial reconfiguration.

Function void toggle_filter(unsigned PRIdx)is used to toggle filter on programmable

region index PRIdx and it consists of the following algorithm:

 Disable filter

 Disable SIHA slot

 Load partial bitstream through FPGA manager

 Enable SIHA slot

 Enable filter

Function void dfx_load_bitstream(unsigned bitIdx, unsigned PRIdx) is used to load

bitstream through FPGA manager driver using partial reconfiguration.

Commands CMD_KYBD_TOGGLE and CMD_BTN_TOGGLE are used in SINGLE_MODE mode of the

application to initiate filter toggling by cycling through available filters indexed in the following manner:
0 - No filter, 1 – Green CCM filter and 2 - Sobel filter.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 45 of 70

Figure 32: SINGLE_MODE camera 0 (programmable region 0) Sobel filter example

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 46 of 70

In the GRID_MODE there are two different ways to initiate bitstream loading through FPGA manager
driver using partial reconfiguration, based on the user input received:

1. Using command CMD_KYBD_TOGGLE, application prompts user to input integer number (0 –

3) for desired camera number (programmable region) where filter should toggle.
2. Using command CMD_BTN_TOGGLE, application waits for user to press the on board button:

KEY_UP (SW18) - toggle filter on camera 0
KEY_RIGHT (SW17) - toggle filter on camera 1
KEY_DOWN (SW16) - toggle filter on camera 2
KEY_LEFT (SW14) - toggle filter on camera 3

Figure 33: GRID_MODE camera 0 (programmable region 0) Sobel filter example

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 47 of 70

5.7.3 Error injection using SEM

SEM registers are initialized by pressing ‘m’ (CMD_START_SEM) on keyboard. Second UART (SEM

UART) is enabled and user is prompted to reset SEM by typing R 04 command in SEM UART. This

has to be done every time SEM is started in order to SEM function properly.

SEM UART commands that are used in demo are described in section 6.6 SEM UART Example
Commands. After reseting SEM to inject and detect errors, user has to follow instructions displayed

on main application UART. The instructions are the following:

1. Put SEM in Idle mode
2. Inject errors
3. Put SEM in Observation Mode

If 2-bit error is injected to FPGA, SEM detects uncorrectable error (FC 60 is is displayed on SEM

UART) and uncorrectable GPIO status is set. This GPIO is polled in main application loop and if
detected it initiates disabling SEM and fixing errors by partially DFX reconfiguring all 4 programmable
regions (PRs). After it is finished, application resumes to default demo control commands and main
loop.

5.7.4 Configuration file description

Demo application configuration file is config.json and it is loaded into the application from the

main thread. It contains all file and directory paths necessary to run the application. Description of file
contents is showed in Table 6.x.

Table 5.4: Contents of the application configuration file config.json

members in .json file member description

plfConfPath platform configuration file path
filterBitPaths filter bitstream file paths used by FPGA manager

To run the application all file paths and names have to be correctly stated in the
config.json or application will terminate.

If user needed to change the path to the config.json to some other path on the SD card or in the

file system, new path has to be specified as an application argument. The default config.json path

is /mnt/sd-mmcblk0p1/config.json. For example, if the file path is to be changed to the

/mnt/sd-mmcblk0p1/configs/config.json, the application has to be run as follows:

./app_zcu102_4cam_linux.elf /mnt/sd-mmcblk0p1/configs/config.json

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 48 of 70

If config.json file path was changed, make sure to add new path as application

argument also in the init.sh startup script. This will start application with correct

config.json file path after every board reboot.

5.7.5 Input resolution and the frame rate

The logiREF-DFX-IDF reference design uses the 1928x1208@30 input video resolution.

5.7.6 Output resolution and the frame rate

The logiREF-DFX-IDF reference design uses 1928x1208@60 output resolution.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 49 of 70

6 QUICK START

Figure 34: logiREF-DFX-IDF HW Setup and the GMSL2 card connection

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 50 of 70

6.1 Run the Precompiled Linux Demo Examples

To enable rapid testing of the hardware setup, Xylon provides application demo binaries in the
binaries folder of the deliverables.

To run the DFX Demo application, copy the content of the binaries/bin folder to the root folder of

the formatted SD card. The SD card should be formatted as FAT32.

Optionally, you can use a serial terminal program (baud rate 115200 8N1) and the USB UART

connection to the ZCU102 board to monitor the system’s operation during the boot and application
execution.

For full explanation of the ZCU102’s features and settings, please check the documentation Xilinx
XTP426.

6.2 Demo controls

Start the DFX Demo application and the display will show the video output from 4 attached
cameras in 2x2 grid. Press following keys to control application:

 ‘d’ / KEY_RIGHT(SW17) = next mode

 ‘a’ / KEY_LEFT(SW14) = previous mode

 ‘q’ = quit application

In SINGLE_MODE press ‘t’ / KEY_ENTER(SW15) to toggle filter on current camera

In GRID_MODE press:

 ‘t’ = application prompts user to input number from 0 to 3 to toggle filter on that camera

number

 KEY_ENTER(SW15) = application prompts user to input one of 4 other on board keys that

correspond to camera numbers in the following manner:
o KEY_UP(SW18) - toggle filter on camera 0
o KEY_RIGHT(SW17) - toggle filter on camera 1
o KEY_DOWN(SW16) - toggle filter on camera 2
o KEY_LEFT(SW14) - toggle filter on camera 3

6.3 Change the Delivered Software

6.3.1 Xilinx Development Software

The logiREF-DFX-IDF reference design and Xylon logicBRICKS IP cores are fully compatible with
Xilinx development tools – Vivado Design Suite 2021.1. Future design releases shall be synchronized
with the newest Xilinx development tools.

Licensed users of Xilinx tools can use their existing software installation for the logiREF-DFX-IDF
evaluation and modifications.

https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/xtp426-zcu102-quickstart.pdf

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 51 of 70

6.3.2 Set Up Linux System Software Development Tools

Set of ARM GNU tools are required to build the Linux software and applications. The complete tool
chain for the Zynq UltraScale+ MPSoC can be obtained from the Xilinx ARM GNU Tools wiki page:
http://wiki.xilinx.com/Install+Xilinx+Tools. Access to tools requires a valid, registered Xilinx user login
name and password.

6.3.3 Set Up git Tools

Git is a free Source Code Management (SCM) tool for managing distributed version control and
collaborative development of software. It provides the developer a local copy of the entire
development project files and the very latest changes to the software.

Visit for example https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841694/Using+Git to get
some basic instructions how to use git.

To get the latest version of Xylon logicBRICKS software drivers for Linux operating system, please
visit Xylon’s git: https://github.com/logicbricks.

6.3.4 Setting up and building the Petalinux project

Development for the Linux target is tightly coupled with Linux kernel configuration, understanding of
boot mechanisms, configuration of device tree handling hardware components dependency, kernel
and user space driver development and other Linux specific topics outside of the scope of this
manual. As Xilinx environment uses the Petalinux to make the Linux based development easier, quick
steps required to build the Petalinux project from the hardware specification (XSA file) and get results
needed are given here.

The file logiREF-DFX-IDF_YYMMDD/software/Linux/petalinux-setup_2021.1.txt file delivered with the
product deliverables describes the same steps. If there were differences in procedure described, the
text file mentioned should take the precedence.

Some application dependencies are built in Petalinux project (libdrm, libcairo and libplf+).
If any changes are needed in this components, make sure to rebuild the Petalinux project
as described in logiREF-DFX-IDF_YYMMDD\software\Linux\petalinux-setup_2021.1.txt.
Even if petalinux project rebuild was not necessary due to HW or kernel changes, the
SYSROOT file structure is going to be needed for application development.

The Petalinux project should be created and built even before attempt of change the application
software because the Linux cross development environment depends on the SYSROOT and other file
file structures holding headers and libraries to build against.

6.3.4.1 Tools needed

PetaLinux 2021.1 Installer is needed, it can only be used within the Linux environment and it can be
freely downloaded from the Xilinx support page:

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-
design-tools/2021-1.html

http://wiki.xilinx.com/Install+Xilinx+Tools
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841694/Using+Git
https://github.com/logicbricks
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2021-1.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2021-1.html

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 52 of 70

6.3.4.2 Installation on Ubuntu 16.04/18.04/20.04

Follow the instructions for Petalinux 2021.1 installation found in the User’s Guide for relevant release,
2021.1 in our case: UG1144 (v2021.1) June 16, 2021 Petalinux Tools Documentation Reference
Guide

6.3.4.3 Setup and basic configuration

There are important file paths to be used and referenced at some point, so get familiar with those
locations in your file system.

<PATH_TO_PETALINUX> -> path to Petalinux 2021.1 installation directory

In the following examples the default installation is in the user home directory:

 ~/tools/petalinux

<PLNX_PROJECT_NAME> -> path to Petalinux project

In the following examples the default installation is in the delivery directory as extracted by the jar
installation process:

~/xylon/logiREF-DFX-IDF_211208/software/Linux/zcu102_4cam_idf_dfx/

The Petalinux project directory structure is best copied from delivery folder to some convenient
location on the Linux build machine. That way the configuration changes done by the user if needed
do not overwrite the default delivered and working Petalinux project setup.

cp -r ~/xylon/logiREF-DFX-IDF_211208/software/Linux/zcu102_4cam_idf_dfx/ ~/dfxidf_build_test/

If we now took a look at the ~/dfxidf_build_test/zcu102_4cam_idf_dfx directory now we should find the
petalinux project specification with all necessary meta information to be used by Petalinux and Yocto.

6.3.4.4 Petalinux configuration and building

Finally we should source the petalinux environment script and start building the project.

source ~/tools/petalinux/settings.sh

The result should be something like this (warnings are to be considered, but in this case did not cause
issues):

PetaLinux environment set to '/home/dcika/tools/petalinux'
WARNING: /bin/sh is not bash!
bash is PetaLinux recommended shell. Please set your default shell to bash.
WARNING: This is not a supported OS
INFO: Checking free disk space
INFO: Checking installed tools
INFO: Checking installed development libraries
INFO: Checking network and other services

Now we can do the petalinux main configuration. It is mandatory for the first build, or after any
hardware design changes impacting the linux environment.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 53 of 70

The command for this is picking the XSA files from the location specified:

petalinux-config --get-hw-description=<PATH-TO-XSA>

<PATH-TO-XSA> location depends on the software delivery structure created after executing the
delivery jar script. This is the location of the XSA file, and in this example command run it is the
following:

~/xylon/logiREF-DFX-IDF_211208/vivado/vivado_dfx_idf_sem/fpga/hp130ba_wrapper.xsa

So the petalinux-config command ran is the following (please note that actual command does not
brake the XSA file path argument into the next line):

petalinux-config --get-hw-description ~/xylon/logiREF-DFX-
IDF_211208/vivado/vivado_dfx_idf_sem/fpga/hp130ba_wrapper.xsa

The result should be something like this, please note how the Petalinux has renamed the XSA file into
something more generic:

[INFO] Sourcing buildtools
INFO: Getting hardware description...
INFO: Renaming hp130ba_wrapper.xsa to system.xsa
[INFO] Generating Kconfig for project
[INFO] Menuconfig project

*** End of the configuration.
*** Execute 'make' to start the build or try 'make help'.

[INFO] Sourcing buildtools extended
[INFO] Extracting yocto SDK to components/yocto. This may take time!
[INFO] Sourcing build environment
[INFO] Generating kconfig for Rootfs
[INFO] Silentconfig rootfs
[INFO] Generating plnxtool conf
[INFO] Adding user layers
[INFO] Generating workspace directory

The screen shown in the Figure 35 is the standard Linux Kconfig screen normally seen with buildroot
and other Linux configurations. This is the place to make any changes to the kernel needed, simply by
going through menus and selecting options. In our example project no changes are really needed, but
we could select some less critical changes just to make sure the kernel was built as specified. For
example, the petalinux-config command could be issued again without any arguments to do some
more changes. On the main screen, use down arrow to select the Firmware Version Configuration
and enter different host name and product name for example, save the configuration and exit.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 54 of 70

Figure 35: petalinux-config commands bring up the standard Kconfig screen

The petalinux-config command can be rerun also without XSA file as an argument, and it will pick up
from the configuration done before, because the system.xsa file is copied and preserved for any
further configurations. If the HW was changed, the steps above should be done again.

In any case result should be something like this, please note that we do not actually run the make
command after configuration, petalinux-build command following will take care of everything:

[INFO] Sourcing buildtools
[INFO] Menuconfig project
configuration written to /home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/project-spec/configs/config

*** End of the configuration.
*** Execute 'make' to start the build or try 'make help'.

[INFO] Sourcing buildtools extended
[INFO] Sourcing build environment
[INFO] Generating kconfig for Rootfs
[INFO] Silentconfig rootfs
[INFO] Generating plnxtool conf
[INFO] Generating workspace directory
[INFO] Successfully configured project

Finally we can run the build command to build the kernel and other components selected (ramdisk
(also fsbl, uboot, pmu...)

petalinux-build

The successful build should result in build and images folders created and populated with build
results.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 55 of 70

6.3.4.5 Boot and Linux image files preparation

All necessary files are already present after successful petalinux-build command, now it is time to
prepare and package boot, fsbl, and other image files necessary by running the petalinux-package
command with following arguments:

petalinux-package --boot --format BIN --fsbl images/linux/zynqmp_fsbl.elf --u-boot images/linux/u-
boot.elf --pmufw images/linux/pmufw.elf --fpga images/linux/system.bit --force

The result should be something like the following, please note which files has been generated by this
step and where there were stored.

[INFO] Sourcing buildtools
INFO: Getting system flash information...
INFO: File in BOOT BIN: "/home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/images/linux/zynqmp_fsbl.elf"
INFO: File in BOOT BIN: "/home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/images/linux/pmufw.elf"
INFO: File in BOOT BIN: "/home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/images/linux/system.bit"
INFO: File in BOOT BIN: "/home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/images/linux/bl31.elf"
INFO: File in BOOT BIN: "/home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/images/linux/system.dtb"
INFO: File in BOOT BIN: "/home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/images/linux/u-boot.elf"
INFO: Generating zynqmp binary package BOOT.BIN...

****** Xilinx Bootgen v2021.1
 **** Build date : May 28 2021-21:36:22
 ** Copyright 1986-2021 Xilinx, Inc. All Rights Reserved.

[INFO] : Bootimage generated successfully

INFO: Binary is ready.

There are more files generated and stored in the images/linux folder, select what is necessary
depending on the boot method. For booting from the SD card on this project, only few files are
necessary and copied to the root of the FAT32 formatted SD card, specifically the BOOT.BIN,
boot.scr, and image.ub from those created in this step. The rest of the files shown in the Figure 36 are
partial bitstreams, camera initialization and configuration files, some tools, the application executable,
the application configuration file and the init startup script.

Figure 36: Content of the FAT32 formatted SD card prepared for the demo application

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 56 of 70

6.3.4.6 Application development environment preparation

In order to be able to do the embedded cross development, some files have to be prepared and
present on the host development computer for each target HW architecture. Those files will be later
accessed by application development environment through the SYSROOT variable set to the specific
folder. Building the Yocto SDK will result in building the sysroot file structure, and it requires a single
argument to the petalinux-build command:

petalinux-build --sdk

After considerable time (at least for the first build) the sdk build process should end with success. If
any error was logged, try rerun the command. Petalinux is able to continue from where it was
interrupted and identify missing tasks that did not complete for some reason. The end result (after
getting some error and running again) may look something like this:
NOTE: Tasks Summary: Attempted 3831 tasks of which 2855 didn't need to be rerun and 1 failed.

Summary: 1 task failed:
 /home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/components/yocto/layers/core/meta/recipes-devtools/gdb/gdb-cross-
canadian_9.2.bb:do_install
Summary: There were 2 ERROR messages shown, returning a non-zero exit code.
ERROR: Failed to build project. Check the /home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/build/build.log file for more
details...
dcika@ubuntu18-04-3-lts:~/dfxidf_build_test/zcu102_4cam_idf_dfx$ gedit
/home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/build/build.log
dcika@ubuntu18-04-3-lts:~/dfxidf_build_test/zcu102_4cam_idf_dfx$ petalinux-build --sdk
[INFO] Sourcing buildtools
[INFO] Building project
[INFO] Sourcing buildtools extended
[INFO] Sourcing build environment
[INFO] Generating workspace directory
INFO: bitbake petalinux-image-minimal -c do_populate_sdk
NOTE: Started PRServer with DBfile: /home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/build/cache/prserv.sqlite3, IP:
127.0.0.1, PORT: 39747, PID: 2991346
Loading cache: 100%
|##
##############################| Time: 0:00:01
Loaded 5100 entries from dependency cache.
Parsing recipes: 100%
|##
############################| Time: 0:00:01
Parsing of 3473 .bb files complete (3465 cached, 8 parsed). 5108 targets, 224 skipped, 0 masked, 0 errors.
NOTE: Resolving any missing task queue dependencies
Initialising tasks: 100%
|##
#########################| Time: 0:00:02
Sstate summary: Wanted 166 Found 151 Missed 15 Current 1134 (90% match, 98% complete)
NOTE: Executing Tasks
NOTE: Tasks Summary: Attempted 3850 tasks of which 3830 didn't need to be rerun and all succeeded.
[INFO] Copying SDK Installer...
[INFO] Successfully built project

If we checked the /build/tmp/deploy directory now we would find the folder generated there containing
the script for building the sdk. This script can be executed directly as it contains all necessary files for
sdk and sysroot generation, but the Petalinux way of preparing packages is again by using the
package command, only with different argument this time compared to earlier boot files preparation:

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 57 of 70

petalinux-package --sysroot

It can be seen from the picture above where the sdk installation folder is. There may be different
architectures supported so the specific sysroot location in our case is

<PLNX_PROJECT_NAME>/images/linux/sdk/sysroots/cortexa72-cortexa53-xilinx-linux

<PLNX_PROJECT_NAME> is /home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx in our example
case the, so the complete path to the sysroot folder location when asked in our case is the

/home/dcika/dfxidf_build_test/zcu102_4cam_idf_dfx/images/linux/sdk/sysroots/cortexa72-cortexa53-xilinx-linux/

The usual Linux file structure should be found there:

dcika@ubuntu18-04-3-lts:~/dfxidf_build_test/zcu102_4cam_idf_dfx$ ls -all images/linux/sdk/sysroots/cortexa72-cortexa53-
xilinx-linux/
total 68
drwxrwxr-x 17 dcika dcika 4096 Dec 9 12:11 .
drwxr-xr-x 4 dcika dcika 4096 Dec 9 12:11 ..
drwxr-xr-x 3 dcika dcika 4096 Dec 9 12:11 bin
drwxr-xr-x 2 dcika dcika 4096 Dec 9 12:11 boot
drwxr-xr-x 2 dcika dcika 4096 Dec 9 12:11 dev
drwxr-xr-x 33 dcika dcika 4096 Dec 9 12:11 etc
drwxr-xr-x 3 dcika dcika 4096 Dec 9 12:11 home
drwxr-xr-x 8 dcika dcika 4096 Dec 9 12:11 lib
drwxr-xr-x 2 dcika dcika 4096 Dec 9 12:11 media
drwxr-xr-x 2 dcika dcika 4096 Dec 9 12:11 mnt
dr-xr-xr-x 2 dcika dcika 4096 Dec 9 12:11 proc
drwxr-xr-x 2 dcika dcika 4096 Dec 9 12:11 run
drwxr-xr-x 3 dcika dcika 4096 Dec 9 12:11 sbin
dr-xr-xr-x 2 dcika dcika 4096 Dec 9 12:11 sys
drwxrwxr-x 2 dcika dcika 4096 Dec 9 12:11 tmp
drwxr-xr-x 11 dcika dcika 4096 Dec 9 12:11 usr
drwxr-xr-x 9 dcika dcika 4096 Dec 9 12:11 var

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 58 of 70

6.3.5 Setting up the Vitis workspace

DFX/IDF demo software application is delivered also in the source code to enable users to do
software customizations wherever necessary. This paragraph explains how to setup the Xilinx Vitis
environment for software customizations referencing the Petalinux project build results described
earlier where necessary.

Source files delivered can be found in the location selected when running the java --jar command
giving the jar file with deliverables as an argument. The default name of the deliverables folder should
be something like logiREF-DFX-IDF_YYMMDD, and the underlying folders found there would be like
shown in the Figure 37. Feel free to explore it. We have already seen parts of the software/Linux
content, now our focus is on the software/Vitis_workspace path.

Figure 37: Directory structure of project deliverables

Quick steps required to set up the Vitis workspace and become ready for application development are
the following:

1. Start Vitis, select the workspace: logiREF-DFX-IDF_YYMMDD/software/Vitis_workspace

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 59 of 70

2. In the Vitis go to: Xilinx→Software Repositories→New, add logiREF-DFX-
IDF_YYMMDD/hardware directory

Please note that adding the custom HW information to the Vitis Software repositories is
very important for using and generating the custom HW platform of the type
linuxuserspace that could not be created by default otherwise. This platform is referred
by applications developed in this demo.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 60 of 70

3. In the Vitis go to: File→Import→Eclipse workspace or zip file→Next, in Select a root directory
choose logiREF-DFX-IDF_YYMMDD/software/Vitis_workspace, deselect option “Copy
projects into workspace” and select all projects and click Finish

4. Right click the platform project hw_plf_zcu102_4cam_lu and build it

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 61 of 70

5. Right click logiVIOF_DRM→C/C++ Build Settings→C/C++ Build→Build variables→select
SYSROOT→Edit… and set Value to < path_to_petalinux_sysroot_directory>

The SYSROOT variable may not be set, or more likely it may point to the value not
relevant for your system as it was set by developer running a different environment.
Either the existing value should be deleted and set to correct value, or it could be edited.
In any case if not set properly, the development environment may not have some
fundamental information to build the system and build process will terminate.

6. Right click and build Library project logiVIOF_DRM

7. Right click app_zcu102_4cam_linux→C/C++ Build Settings→C/C++ Build→Build variables

→select SYSROOT→ Edit… and set Value to the < path_to_petalinux_sysroot_directory>

8. Build the app_zcu102_4cam_linux application, check for build errors, and copy the

application executable (i.e. app_zcu102_4cam_linux.elf) to the SD card along with other
necessary files. Figure 38 shows the example of successfully built application for DEBUG
configuration.

Due to dependencies between the application and the logiVIOF library, please make
sure to use the same configuration options (Release/Debug) for both the application and
the logiVIOF library.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 62 of 70

Figure 38: Vitis application development environment in action

Now the board can be restarted, and init script will run the application automatically. Of course, it is
possible to start the application manually by finding where the SD card was mounted in the Linux file
system, and running this or different executable directly like with any Linux system.

A partial screenshot of the Linux console connection with files on the SD card is shown in the
Other executables found on the SD card does not have to be rebuilt if there were no changes in
kernel or HW.

Figure 39: ZCU102 Linux console connection with the SD card mounted

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 63 of 70

6.4 Debugging Software Application with the TCF Agent

1. Launch Vitis with imported Vitis workspace
2. Make sure that ZCU102 board is correctly connected to PC via Ethernet connection
3. In Target Connections Window (enable it in Window → Show view… → Target Connections →

Open) right click on Linux TCF Agent and click New Target
4. Set Target Name and under Host fill with IP address of ZCU102 and Test Connection

5. Open Debug Configurations window

6. To create a new Debug Configuration, right click on the Target Communication

Framework section on the left hand side of the Debug Configuration GUI and click on New
Configuration

7. Uncheck Use local host as the target
8. In Available targets section the Host IP address of target has to match IP set on ZCU102

board, then select that target (see Figure 41)

Figure 40: Vitis Workspace – Debug Configurations

9. Switch to the Application Tab

10. Enter Project Name, Local File Path and Remote File Path (see Figure 42)

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 64 of 70

Figure 41: Vitis Workspace – Application Tab

11. If shared libraries are used set paths to in the Environment tab (see Figure 43)

Figure 42: Vitis Workspace – Environment Tab

12. Start Debug

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 65 of 70

6.5 SEM UART Example commands

SEM IP Controller can inject errors at specific locations through the dedicated SEM UART
connection. The error injections performed below are by Linear Frame Address (LFA). This process is
a simple read-modify-write to invert one configuration memory bit at an address specified as part of
the error injection command. SEM IP Controller must stop scanning for errors before injecting an
error, so it is commanded to transition to the Idle state. While in the Idle state, errors can be injected
into the configuration memory one bit at a time. After injecting errors, SEM IP is commanded to
transition to the Observation state. In the Observation state, SEM IP Controller begins scanning for
errors in the configuration memory. When an error is detected, SEM IP corrects the error and
generates a report through the SEM UART interface.

The report contains the address in which the error occurred. For more information on SEM IP
commands, reports, and behaviour, see the (REF [4]) documentation.

Some basic example commands and logs that are based on UltraScale+™ FPGAs are run below.
These short examples from SEM IP UART logs are a sample of observable activity when the SEM IP
is configured in Mitigation and Testing mode with the Error classification feature disabled, except
where noted. First thing that user needs to do to use SEM UART and interact with the SEM IP
controller is open another terminal (TeraTerm etc…), select the correct port on Silicon Labs CP210x
USB to UART Bridge. In our case, COM15 is used.

Figure 43: Connection for the SEM UART dialog box

After connection is a success, some additional setting needs to be made in connection settings
window for the proper and correct UART functionality. Those setting are:

Baud: 115200
Settings: Data 8, Parity None, Stop 1
Flow Control None
Terminal ID VT100
New-line transmit CR
New-line receive CR+LF
Local Echo No

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 66 of 70

Figure 44: Connections settings for SEM UART

After everything is set up correctly and the design is running, on SEM UART there is a initialization log
that indicates correctly configured and started SEM IP controller. More on this how to work with SEM
IP controller can be found (REF [4]) documentation.

SEM_ULTRA_V3_1

SC 01

FS 04

AF 01

ICAP OK

RDBK OK

INIT OK

SC 02

O>

There, we can see that SEM IP Controller starts in Observation mode (O>) right after initialization. In
our reference design, we will test some single bit and double bit error injection into one of our four
reconfigurable regions by running appropriate SEM IP Controller Injection commands. User can inject
single bit error that will be corrected by SEM IP Controller and the appropriate flag will be set. Prior to
error injection, user must set SEM IP controller into Idle mode (running I command at SEM UART).
This will return correct Status code (SC 00 – Idle mode)

O> I

SC 00

I>

In Idle mode, user can then perform single bit injection errors, one bit at the time by running
appropriate command. For the ECC error in reconfigurable partition 0, injection command is:

N C0005D2E5A0

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 67 of 70

SC 10

SC 00

Reading status codes after error injection, we can see that the SC 01 is stated first, which indicates
that the Injection was performed and after that, SEM IP Controller is again in Idle mode. To set SEM
IP controller into error detection mode, SEM IP Controller needs to be configured in Observation
mode (running O at SEM UART).

O>

RI 00

SC 04

ECC

TS 000019F9

PA 000C6000

LA 00005D2E

COR

WD 2D BT 00

END

FC 00

SC 08

FC 40

SC 02

O>

This logs shows us the type of error that is detected and address at which error occurred. Also, by
reading status codes and flags, we can see that SC 04 is set. This status codes indicate that
Correction is performed by SEM IP Controller. Finally, setting the flag FC 04 indicates type of error
detected, so we can see that Correctable and Essential error is detected. After detection and
correction, SEM IP Controller goes again into Observation mode. (SC 02).

For injection of two-bit error, that will cause SEM IP Controller to trigger the Uncorrectable event, we
are simply injecting two error commands one after one when SEM IP Controller is in Idle mode:

I> N C0005D2E5A0

SC 10

SC 00

I> N C0005D2E5A4

SC 10

SC 00

I>

Now, if we put SEM IP Controller into Observation mode, next log is shown:

I> O

SC 02

O>

RI 00

SC 04

ECC

TS 0000589A

PA 000C6000

LA 00005D2E

COR

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 68 of 70

END

FC 60

SC 08

FC 60

SC 00

I>

We can see now that SEM IP Controller flag is set to FC 60 which tells us that Uncorrectable and
Essential Error is detected. From this point, user must perform additional actions on corrupted
configuration memory because SEM is not able to correct these types of errors. In our DFX solution,
when there is an uncorrectable error in one of reconfigurable partitions, we can just simply perform
partial reconfiguration at affected partition with correct and available partial bitstreams.

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 69 of 70

7 REFERENCES

Table 7.1: List of references

Reference Description

REF [1] Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)

REF [2] Vitis Vision Library Functions

REF [3] Isolation Design Flow for UltraScale+ and FPGAs and Zynq UltraScale+ MPSoCs

REF [4] UltraScale Architecture Soft Error Mitigation Controller v3.1

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug909-vivado-partial-reconfiguration.pdf
https://github.com/Xilinx/Vitis_Libraries/tree/master/vision
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiOv_fty-rzAhWs-ioKHQ_mBzoQFnoECAkQAQ&url=https%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fapplication_notes%2Fxapp1335-isolation-design-flow-mpsoc.pdf&usg=AOvVaw1aYAmd3wm7m5YGSDhFDDSx
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj44eT3zerzAhXMk4sKHUDBB8cQFnoECAcQAQ&url=https%3A%2F%2Fwww.xilinx.com%2Fsupport%2Fdocumentation%2Fip_documentation%2Fsem_ultra%2Fv3_1%2Fpg187-ultrascale-sem.pdf&usg=AOvVaw2qoSAV8gwlGJRClhtcNvSf

logiREF-DFX-IDF User’s
Manual

February 21st, 2022 Version: v1.0.2

Copyright © Xylon d.o.o. 2001-2022 All Rights Reserved Page 70 of 70

8 REVISION HISTORY

Version Date Author Approved by

1.00.a November 24
th
, 2021 A. Popovic, T. Cvoriscec D. Cika

Initial Xylon release

1.01 December 8
th
, 2021 D. Cika G. Galic

Update of chapter 6.3 - Change the Delivered Software

1.02 February 21
st
, 2022 R.Soldat

Added Chapter 4.2 - Getting the Xilinx HDMI 1.4/2.0 Transmitter Subsystem License.
Updated the full name of the reference design.

	1 About the Framework
	1.1 Programmable Logic Utilization
	1.2 Hardware Requirements
	1.2.1 GMSL2 Deserializer FMC Module
	1.2.2 Xylon GMSL2 Camera

	1.3 Software Requirements
	1.3.1 About Xilinx VitisTM Development Environment

	1.4 Design Deliverables
	1.4.1 Hardware Design Files
	1.4.2 Software
	1.4.3 Binaries

	1.5 Reference Design

	2 LOGICBRICKS IP CORES
	2.1 About logicBRICKS IP Library
	2.2 Evaluation logicBRICKS IP Cores
	2.3 logicBRICKS IP Cores Used in This Design
	2.3.1 logiCVC-ML Compact Multilayer Video Controller
	2.3.2 logiWIN Versatile Video Input

	2.4 logicBRICKS IP Cores for Video Processing

	3 GET AND INSTALL THE Design Framework
	3.1 Installation Process
	3.1.1 Filesystem Permissions of the Installed Folder (Microsoft® Windows® OS)

	Folder Structure

	4 GETTING THE IP LICENSES
	4.1 Getting logicBRICKS IP Licences
	4.2 Getting the Xilinx HDMI 1.4/2.0 Transmitter Subsystem License

	5 logiREF-DFX-IDF reference Design
	5.1 logiREF-DFX-IDF SoC Design and Memory Layout
	5.1.1.1 Registers Address Map

	5.2 Video Input/Output Synchronization
	5.2.1 logiWIN Hardware Buffering Implementation
	5.2.2 logiCVC-ML Hardware Buffering Implementation

	5.3 Xylon logicBRICKS IP Core Configuration
	5.4 SIHA IP Manager
	5.5 SEM IP Controller
	5.6 Restoring Full MPSoC Design from Xylon Deliverables
	5.7 Software Description
	5.7.1 Demo application
	5.7.2 DFX functionality description
	5.7.3 Error injection using SEM
	5.7.4 Configuration file description
	5.7.5 Input resolution and the frame rate
	5.7.6 Output resolution and the frame rate

	6 QUICK START
	6.1 Run the Precompiled Linux Demo Examples
	6.2 Demo controls
	6.3 Change the Delivered Software
	6.3.1 Xilinx Development Software
	6.3.2 Set Up Linux System Software Development Tools
	6.3.3 Set Up git Tools
	6.3.4 Setting up and building the Petalinux project
	6.3.4.1 Tools needed
	6.3.4.2 Installation on Ubuntu 16.04/18.04/20.04
	6.3.4.3 Setup and basic configuration
	6.3.4.4 Petalinux configuration and building
	6.3.4.5 Boot and Linux image files preparation
	6.3.4.6 Application development environment preparation

	6.3.5 Setting up the Vitis workspace

	6.4 Debugging Software Application with the TCF Agent
	6.5 SEM UART Example commands

	7 REFERENCES
	8 REVISION HISTORY

